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Application of an Artificial Neural Network to the Prediction of Firedamp Emissions in Coal Mines

Coal extraction at great depths and high Output faces lead to more and more elevated and irregulär firedamp emissions. To respect safety conditions, coal production must be programmed to limit methane emissions in airways.

In this contcxt, the prediction of firedamp emissions is an interesting tool to optimize safety and production.

Bul mathematical modelling of firedamp desorption and gas circulation physical processes involvc non-linear physical laws and a high number of hardly accessible parameters.

So artificial neural networks have been developed to model firedamp emissions : artificial neural networks äs universal approx'imators are able to learn from examples and generaiize in unknown situations.

Artificial neurat networks need a large amount of data sufficiently representative to learn the physical processes. Data relative to mining Ventilation, such äs methane concentration and air velocity in airways, are monitored and can be used to model firedamp emissions.

The model based on artificial neural networks has been calibrated and validated using data from coal faces recently exploited in Lorraine Coalfield (East of France). The model reliability has been appreciated on the results of a posteriori forecasts.

The model is used to forecast methane concentration values in airways äs a function of coal production.

l.

INTRODUCTION

Fi-ench colliery operations are now characterised by a considerable degree of mechanisation and high Output faces. Also the increasing depths at which coal is extracted is bringing about a change in the characteristics of firedamp emissions : their levels are relativeiy high, with wide variations.

In this Situation, mining operations must be conünued with great care in order to optimise safety. The presence of high levels of firedamp in the air may restrict or interfere with Output. The operator must therefore adapt production in order to ensure that the regulatory limits are not exceeded.

The ability to predict firedamp emissions can then be seen äs a particulariy attractive way of satisfying the safety requirements, äs well äs productivity goals, by making it possible to select production faces over time in the most appropriate way.

Mcthods for predicting firedamp emissions have already been developed in the past. However the early modeis used could do no more than predict average releases [JEGER, 1980], did not incorporate the effects of time and the rate of face advance, and could therefore not be used for monitoring fluctuations in emissions.

Later developments were based upon the routine statistical techniques of simple or multiple linear regression [START_REF] Pokryszka | Evolution des methodes de prevision du degagement gi-Lsouleux » -Journee technique des Charbonnages de France[END_REF]COUILLET J.-C, POKRYSZKA Z., 1996]. Although these modeis do take into account the dynamics of firedamp emissions and the local specific features of the working area äs regards firedamp, they can unfortunately provide prcdictions only on a weekly basis.

In f'act for predictions over a shorter period -a day or a shift -the problem is more complex, esscntially owing to the nonlinearity of firedamp desorption and transport. And of course it is precisely this knowledge of the emission, at least on a daily basis, that would make it possible to Programme the work more effectively.

In the same time, an higher performance modelling method has been identified äs a particulariy novel technique, that of artificial neural networks. A study was then carried out with a view to npply this technique to predict firedamp emissions at a longwall face.

This presentation of the research includes :

-a dcscription of the principles underlying the technique of artificial neural networks ; -a presentation of the major developments to optimise the prediction method ; -and a practical application to a particular case.

BACKGROUND AND MAJOR ISSUES

POTENTIAL OF THE TECHNIQUE

The artificial neural network technique is a modelling tool that has already proved its worth in a numher of fields (banking, military applications, meteorology, and so on) in dealing with prohicms äs diverse äs those concerning the prediction, classification or even the processing of ihc signal.

The advantages of this technique are its ability to reflect nonlinear relationships, to learn from examples, and also to describe the physical phenomenon to be modelled on the basis of a sample of data. Accordingly physical knowledge of the problem -usually expressed in terms of mathematical equations -is not essential for it to be modelled.

This also means that the technique shows considerable resistance to any perturbation of the basic clala (Tor example, data that are partially erroneous or biased) and an ability to adapt to possible change.s in the physical phenomenon.

On the other hand, the neural System must nonetheless satisfy certain requirements : among other things, there must be an adequate quantity of data relating to the physical phenomenon.

NEURAL NETWORKS AND FIREDAMP EMISSIONS

The mechanisms that govern firedamp desorption and gas circulation in the strata are such that it is complicated or even impossible to describe firedamp emissions in mines completely by means of a physical equation.

On the other hand, measurements relating to the coal extraction process and to the composition of the atmosphere are made frequently and regularly in existing mines. These measurements constitute a valuable database äs to the history of the extraction zones and can be used to improve undcrstanding of the phenomenon.

On (his basis the technique of artificial neural networks proves to be a suitable too! for modelling f'ireclamp emissions. Some foreign research [START_REF] Dixon | The application of neural networks to Underground methane prediction » -7" 1 US Mine Ventilation Symposium[END_REF] on this topic, and feasibility studies on a number of French coalfaces have m fact confirmed this potential.

GENERAL FUNCTIONING OF ARTIFICIAL NEURAL NETWORKS

The first developments of artificial neural networks date from 1943 when a simplified mathematical model of the biological neuron was worked out [McCULLOTH W.S., PITTS W. A., 1943]. The first artificial networks were used in the 1960s, but then it was not until 1982 that the technique saw a resurgence of interest [START_REF] Hopfield | Neural networks and physical Systems with emergent collective computational abilities[END_REF].

PROCESSING ELEMENT

The processing element reproduces the Operation of the biological neuron in a simplified manner.

Eacli neuron has a number of inputs, denoted e" from which an Output denoted S is caiculated.

In concrcte terms, each input is weighted by a synapüc weighting factor denoted pi whereupon an aclivation lunction then works out the weighted sum of these inputs : 

NEURAL NETWORKS

To form a network, the neurons are connected to one another. In a conventionai structure, the neurons are arranged in a series of layers in which there is respectively : an input layer, then one or more hidden layers and then an Output layer. All the neurons in a given layer, except those in (he last layer, are then connected to each neuron in the next layer (figure l).

The input variables of the model are fed to the neurons in the input layer and the neurons in the output layer then provide certain values.

Input layer

Hidden layers O utput layer The modelling of the physical phenomenon by the neural network begins with a learning phase.

Input vcctors are presented a certain number of times to the network which then adjusts the weighting of each neuron in such a way that the caiculated Outputs are äs dose äs possible to those required.

If the network is to perform well in the learning phase, it must also respond correctiy when vectors it lias never encountered before are presented. To check this fact, new vectors are introduced to the network. A result of good quality will then validate satisfactory learning by the network.

hi this way the neural network expresses its ability to generalise population, it can deduce the ruie governing the entire population.

from a sample of the

MODELLING FIREDAMP EMISSIONS

METHODOLOGY

Dcvcloping an artificial neural network is based primarily on determining :

-the model ;

-a neural structurc adapted to the model defined and hence related to the architecture of the network. What has to be defined is the arrangement of neurons, the connections between Ihc processing elements, the transfer function and the initial weighting factors.

The mcchanism of firedamp emission involves a number of parameters such äs the geological siructure around the seam being worked, the gas concentration in the coal seams and rock strata, the CH 4 adsorption isotherm of the coal seams, the extent of degassing of the strata, the nature of the surrounding rocks, the permeability of the whole structure, and so on.

A great dcal of research has shown that in steady-state firedamp releases, the quantity of firedamp released into a particular working area depends closely on the rate of coal extraction IBRUYET, 1967 ;[START_REF] Borowski J - | Les relations entre la production et le degagement en taille » -Travaux du GIG. puhlication n°472[END_REF][START_REF] Kaffanke | Prevision ä moyen terme du degagement de grisou dans les voies de relour d'air des chantiers[END_REF].

Tbc approach using artificial neural networks also shows that it is preferable to inakc use of those variables (hat characterise the physical phenomenon being studied in the mo.st basic form possihle.

Aecordingly the model was developed so äs to relate the firedamp emissions to the face output, on the basis of the following three variables :

-d ie CHU concentration in the air return [%] and the ah-flow in the face airway [mVs], expressing the firedamp emission ;

-die distance travelled by the shearer during cutting at the face (m), refiecting the face exiraction rate.

The ncural nclwork was thcrcfore construeted using the following inpul and output variables, using :

-äs output variable :

• tlie mean methane concentration at a period located more or less far in the future -;is input variables :

• the mean methane concentrations at periods in the past ;

• the mean air flows at the past points and the predicted values at the future periods ;

• die distances travelled by the shearer in the cutting phase at the passed periods and the predicted values at the future periods.

The devclopments then involve characterising these variables with regard to the physical phenomenon of firedamp emissions. For this purpose, several configurations were prepared and lesled using data representative of the problem raised.

üllimately a synthesis of these experiments should result in the definition of the best possible prcdiction model.

EXPERIMENTS

The experiments can be illustrated using the results obtained for the "Irma Nord" face 1140/1250 at thc Reumaux mine. This face is undercut and the goaf is caved. The panel length is 1680 m for an averagc opening of 3.6 m. The Ventilation follows a U pattern with an airflow of between 38 and 50 m V .s. The face is worked on a 3 x 8-hour shift basis from Monday to Friday.

Tlie changes in the different characteristic variables (CH4 concentration, airflow and output) during working of the face is shown on figure 2 using a time interva! of 8 hours. The calculations showed first of all how important it was to have representative calibration data.

The calibration database must be sufficiently extensive so äs faithfully to represent the Output at (lie face. Similarly, the results were mostly much better when the model was calibrated over the pcriod äs dose äs possible to the prediction period.

The expcriments also demonstrated the need to construct the network carefully : a badly consiructed network will in fact never be able to provide usefui predictions, however relevant the variables.

Ullimalely, an optimal configuration was devised, capable in pariicular of learning how to model unslable liredamp emissions (changes to the volume of influence, in the Output rate, and so on).

The rcsulls given in figures 3 and 4 are from an optimal configuration of the neural network.

These arc a posteriori predictions, for which the values of CH4 concentrations caiculated by the model arc compared with those actually measured at the face. Quile apart frorn the overall shape of the above curves, the performance of the prediction can be cvaluatocl using the coefficient of con'elation between the predicted and measured values. For the caiculations done for the Irma Nord face 1140/1250, this coefficient is sufficiently dose to l for die rcsLilts (o be regarded äs satisfactory. Its value is 0,69 for the test äs a v/hole.

5.

CONCLUSION

Appiication of the technique of artificial neural networks to predicting firedamp einissions at a coalfacc has clearly demonstrated the potential of this approach.

The model was developed with the aim of predicting values of methane concentration in the air rcliii'n. These predictions are based on the past values of the methane concentration and on the p;isl and lulurc values of the othcr variables involved in the phcnomcnon considered (airfiow at I he l'ace and face Output).

The experiments clearly demonstrated the importance of the configuration of the neural network (o (he quality of the results. In fact the main difficulties arise in modelling unstable regimes of firedamp cmissions (changes in the volume of influence, face Output, and so on).

However the selected configuration learns these difficulties better than others. For modelling to he successfui, the learning data must be representative. The results also show that the performance of the prediction is conditioned by an appropriate model of the neural network.

The model devised gives entirely satisfactory results and can be used to monitor ongoing faces in sucli a way äs to pcrmit improved programming of future production.
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  nonlinear transfer function (p (a sigma function for example) caiculates the Output S äs a lunction of the value of the activation function, or S = (p
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 2 Figure 2: Changes in characteristic variables for the Irma Nord face 1140/1250 at the Reumaux colliery Scveral modeis were developed and applied using data from the face studied.
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 4 Figure 3 : Prediction of firedamp emissions (learning set)