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ABSTRACT

Oxygen consumption (OC) calorimetry and carbon dioxide generation (CDG) calorimetry are
usual methods to determine the heat release rate (HRR) in bench-scale and large-scale fire
tests. The paper emphasises on measuring problems associated with fires releasing large
amounts of soot. Until now, the soot-related energy transfer was hardly ever taken into
consideration in practical applications of HRR calculations. From standard CDG calorimetry,
a generalised relationship is introduced in order to take into account the soot generation in the
accurate determination of the heat release produced in sooty fires. The analysis of the
significance of this correction factor is discussed by theoretical consideration as well as from
results of lab-scale experiments recently carried out on chemicals by means of the INERIS fire
calorimeter.

KEYWORDS : fire tests, heat release rate, carbon dioxide generation calorimetry, soot
generation

NOTATIO N LIST

a Number of carbon atoms in the test molecule CaHbOcCld

Cs Mass concentration of smoke particles (g.nï3)



ECOi Energy release per unit mole of CO2 produced for complete combustion (kJ.mole"1)
E'co E n e r gy re lease p er un it mo le of CO p roduced for incomplete combus t ion to CO (kJ.mole"1)
E"s Ene rgy re lease p er un it mo le of soot p roduced (assumed to be carbon) for i ncomp le te

combus t i on to soot (kJ.mole"1)
ft Y ie l d of i (mass of i p roduced to mass of fuel lost)
Io Intensi ty of inc ident l ight
/ Intensi ty of the t ransmi t ted l ight th rough smoke
k L ight ex t inc t ion coeff icient (m"1)
L Opt ical p a th length th rough smoke (m)
m M a ss f low ra te (g.s"1)

M Mo lecu lar w e i g ht ( g . m o r1 )
q Heat Re lease Ra te ( kW)
r Ra t io of H RR w i thout soot cor rec t ion to the actual H R R.
Ve V o l u me f low ra te i n the exhaust duct ( m3 . s4 )
xt Ra t io of y ie ld of p roduct i to y ie ld of C O2 (normal ised y ie ld of p roduct i )
Yj M o l ar f ract ion of i
AHC0 E n e r gy re lease p er un it mo le of CO consumed in the bu rn ing of CO (283 kJ.mole"1)
AHS E n e r gy re lease p er unit m o le of ca rbon consumed in the burn ing of ca rbon (393 .5 kJ.mole"1)
as Specific extinction area per unit mass of soot (nr^.g'1)
a Expansion factor (=1.105)
s Average relative variation
<f>  Oxygen depletion factor (see equation 7)
0 Equivalence ratio

Subscripts
a Refers to incoming air
e Refers to fumes in the exhaust duct
/ Refers to burning fuel
1 Refers to compounds

Superscripts
A Refers to molar fractions in the analyser
A0 Refers to molar fractions in the analyser prior to the test
0 Refers to incoming air

INTRODUCTIO N

Heat release rate evaluation is a common practice in any fire risk assessment procedure. Usual
methods to measure heat release rate are based on the application of the oxygen consumption
(OC) [1-4] and carbon dioxide generation (CDG) calorimetry [1]. The OC calorimetry states
that heat of complete combustion per unit mass of oxygen consumed is approximately constant
for many carbon and hydrogen containing organic solid, liquid and gaseous compounds [4,5].

CDG calorimetry similarly states that heat of complete combustion per unit mass of carbon
dioxide generated is approximately constant for most organic liquid, gaseous and solid
compounds [1]. The heat of combustion per unit mass of carbon dioxide generated for a large
number of gases, liquids and solids is 13.3 kJ/g with a ± 11% variation.
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The heat release rates calculated from CDG calorimetry using average values of the heat of
combustion per unit mass of carbon dioxide and carbon monoxide generated are only
approximate. For accurate heat release rate calculations, actual elemental composition of the
material and net heat of complete combustion are required.

In addition, high molecular weight organic compounds or halogen containing chemical
substances may release large amounts of soot irrespective of the ventilation conditions.
Ventilation controlled fires also provide favourable conditions for increasing yields of soot for
various chemical substances. Classical CDG calorimetric relationships have thus been
reviewed to derive adequate procedures capable of appraising the effect of soot production on
effective heat release calculation. The assessment of the significance of the soot correction
factor is examined by use of experimental data at lab-scale.

THEORETICA L BACKGROUN D OF MODERN FIRE CALORIMETR Y

The OC and CDG calorimetry are extensively used both in bench-scale and large-scale fire
tests [6,7,8,9,10,11]. Most of these tests are carried out in open or semi-open systems, where a
hood is used above the burning item to exhaust all combustion products plus dilution air. In
practice, the measurements of the gas flow rate, temperature and effluent composition (molar
fractions of oxygen, carbon dioxide and carbon monoxide, essentially) allow easy calculation
of the heat release rate of the experimental fire by derivation of mass balances on oxygen
and/or carbon.

In the standard CDG calorimetry, the heat release rate is calculated from the measurement of
the mass generation rate of CO2, corrected for the mass generation rate of CO [1] :

. _ £'CO2 . . .0 \ , E QO . n^
q — ( iitQQ-j — COt s CO \^-)

Mco7 Mco

w h e re
q = Heat release rate (kW)
Eco = Energy release per unit mole of CO2 generated for complete combustion to CO2 (kJ.mole1)
E'co = Energy release per unit mole of CO generated for incomplete combustion to CO (kJ.mole'1)
MCOi = Molecular weight of carbon dioxide (44 g.mole'1)
Mco = Molecular weight of carbon monoxide (28 g.mole'1)
m°COi = Mass flow rate of CO2 in the incoming air (g.s1)
mC02 = Mass flow rate of CO2 in the exhaust duct (g.s'1)
m c o = Mass flow rate of CO in the exhaust duct (g.s'1)

Since the water vapour is removed from the sampling line before the measurement of molar
fractions of O2, CO2 and CO, the mass flow rate of CO2 in the incoming air, m°CO2, is given
by:

° _™an Y0 )VA°
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where
ma = Mass flow rate of incoming air (g.s'1)
Ma = Molar weight of incoming air (29 g.mole'1)
Y'ù20 = Molar fraction of water vapour in the incoming air

Y*Oi = Measured1 molar fraction of carbon dioxide in the incoming air

The mass flow rates of CO2 and CO in the exhaust duct are given respectively by

where
rhe = Mass flow rate in the exhaust duct (g.s'1)
Me — Molar weight of fumes in the exhaust duct (g.mole1)
YHJ0 = Molar fraction of water vapour in the exhaust flow
Yco2

 Yco - Measured1 molar fraction ofCO2 and CO respectively (during the combustion test)

By substituting equations (2), (3) and (4) into equation (1), the equation to calculate the heat
release rate by CDG calorimetry becomes

q = ̂ - (1-YH2O) (EC02 YC
A

O2 +E'CO Yéo)-^-(l-Yô) ECO2Yéo2 (5)
M M

Due to the large dilution factor of the combustion gases generally induced by the air
entrained into the exhaust hood, it can generally be assumed that Me is nearly equal to Ma.
The same technical background hopefully justifies in most practical applications a further
simplification in the effective calculation procedure by neglecting the influence of water
vapour molar fractions. In many cases the error is negligible. A more detailed evaluation of
the water molar fractions influence has been provided recently in another paper [13]
considering the case of methane which represents a worst case because it is the hydrocarbon
with the highest hydrogen to carbon ratio.

The mass flow rate of incoming air may be calculated from the following equation [12]:

*  (6)
l)

w i t h , <fi  =  ̂ ±— - i — (7)

The nomenclature is the same as that used by Janssens and Parker [12]. The superscript A refers to molar
fraction of any species measured in the analyser (which is different from the corresponding molar fraction in the
exhaust flow).



where,
<t>  = Oxygen depletion factor
Y*2 = Measured molar fraction of oxygen in the incoming air

rA
YQ2 = Measured molar fraction of oxygen during the combustion test
a = Expansion factor (average value & 1,105)

INTRODUCIN G A SOOT GENERATIO N CORRECTION FACTOR

The chemical nature of the burning material or specific fire conditions (e.g. underventilation)
can lead to large productions of soot [1,14,15]. This statement has led us to study a modified
equation allowing the calculation of heat release based on CDG to take into account the soot
production:

(8)^ 2 2 ^
MCo2

 Mco

where

E"s = Energy release per unit mole of soot generated for incomplete combustion to soot (kJ. mole1)
ms =Massflow rate of soot in the exhaust duct (g.s'1)
Ms =Molecular weight of soot (12 g.mole'1)

Chemical analysis shows that (mature) soot particles generated from hydrocarbons burning
in diffusion flames contain only a few percents by weight of hydrogen and oxygen [16,17].
It can thus be assumed that soot particles are principally made of carbon.

Since condensable species and soot particles are removed from the sampling line before
measurement of molar fractions of O2, CO2 and CO, the mass flow rates of carbon dioxide
and carbon monoxide in the exhaust duct are given by:

T- = TrYc (l-YYd-Ys) (9)
CO2 K

^ ^ e S ) (10)Mco

where
Ycond,n = Molar fractions of condensable species such as H2O, acid gases (HO,...) in the exhaust

duct
Ys = Molar fraction of soot in the exhaust duct

The mass flow rate of soot can be measured by direct sampling or calculated from optical
smoke measurements. According to Lambert-Beer law, the attenuation of monochromatic
light over a given optical path through the smoke generated by the burning fuel can be
expressed as
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where
Io = intensity of incident light
I = intensity of the transmitted light through smoke
L = optical path length through smoke (m)
k = light extinction coefficient (m1)

It has been shown that light extinction coefficient k is proportional to mass concentration of
soot particles [18,19]:

k = crsCs (12)

where,
Cs = Mass concentration of smoke particles (g.m3)
crs — Specific extinction area per unit mass of soot (nf.g'1)

The value of the specific extinction area crs is roughly constant for fuels burning in flaming
mode and producing primarily carbon soot [20]. In open systems, since the attenuation of
light through smoke is measured in the exhaust duct, the mass flow rate of soot follows as:

ms=CsVe=^- (13)

where
Ve — Volume flow rate in the exhaust duct at the actual temperature where the photometer is

located (irf.s'1)

The molar fraction of soot in the exhaust duct can be written as

* - * * - £ • (14)

me Ms

Finally, the heat release rate taking account of the soot generation is given by:

For a practical appl icat ion of equation (15), the user still requires the values of the calorimetric
coefficients Eco ,E'CO and E"s. With some exceptions, the value of EC02 is approximately
constant [1] . Tewarson calculated the calorimetric coefficient ECOi for a list of about 200
compounds. F rom these actual values, the average value of the calorimetric coefficient EC02 is
585,2 kJ per mole wi th an average variation sco of 8,5%2.

! Average variation calculated from actual values of Eco2



By application of the Hess law, the calorimetric coefficients E'co and E"s may be calculated
from

E'co = Eco2 - AHco = 302,2 - - ( 1 6)
2 mole

E"s = EC0 -AHs= 191.7-- (17)
2 mole

where

AHro = Energy release by complete combustion of CO per unit mole of CO consumed (283 kJ. mole')

AHS = Energy release by complete combustion of soot (assumed to be C) per unit mole of carbon consumed

(393.5 kJ. mote1)

From equations (16) and (17), it comes out that the calorimetric coefficients EC02,E'C0 and
E"s have the same average absolute variation of 49,7 kJ/mole. The average relative variations
of E'co and E"smay be calculated from:

Eco7

--^-  = 16,5 % (18)
CO

_L ^259% ciQ'l

The average calorimetric coefficients may be useful especially for materials of unknown
molecular compositions. Unfortunately, the values of the average relative variations are
important. Therefore, if the actual values of the calorimetric coefficients are available for the
burning material, these values should be used in the calculations instead of the approximate
values.

SIGNIFICANC E OF THE SOOT GENERATIO N CORRECTION FACTOR ON HRR

The heat release rate may be expressed as function of yields of CO2, CO and soot. In practice,
by use of the definition of yield of product i,

j —m.

m
(20)

and according to equations (8) and (1), the heat release rate with or without soot correction is
given respectively by

A - m / •'CO2  P 1 /CO PT , fs p n ) /o \
^corrected ~ mf ( ~ hCO2

 + ~ h CO + TT~ h S ) (Sbis)
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where,



/,- = Yield ofi (mass ofi produced to mass of fuel lost)
rhf = Mass loss rate of fuel (g.s1)

To assess the significance of the soot correction factor appearing in equation (15), the ratio r
of the standard heat release rate (equation Ibis) to the corrected heat release rate (equation 8biS)
was introduced and expressed in terms of measurable parameters according to the following
procedure:

H s tan dard

Q corrected
Qcor

f C°2 1JCO-, , , J

"  Mco2
Eco2
, , ' JCO

MC02

E'co

E'co

E'co

MCo

- + fs
E"
M

t

s
s

(21)

Equation (21) may be normalised in the form of

E , Y
 E ' c o
co

fv frn Mco Mcor = function (xs = -Jj-,xco = - ^ 2 _; - — ^ — (22)
JCO2 JCO2 , „  E, x

 tCO , Y
 £ 5

Mco2
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Several researchers [1,14,21,22] published experimental results about yields of soot and
carbon dioxide. Some of the higher values of xs are listed in table 1. According to the review
of their experimental data, the value of 0.4 seems to be a reasonable upper limi t of this
variable (for common products).

TABLE 1: Some of the higher values of ratio of soot to carbon dioxide yields.

Substance

Benzene
Polyvinylchloride ( o> < 0.35)3

Polystyrene (<D= 0.2)
Polystyrene ( <D = 2)
Polystyrene ( o = 3)

XS ~ r
Jco2

0.08
0.37
0.07
0.19
0.32

To analyse the contribution factor of soot production, the ratio r has been plotted as a function
of xs, with two extreme values [6] of the parameter XCO (see figure 1). The error by ignoring
the soot correction in the heat release rate calculation may be clearly significant if the variable
xs takes a large value. As an example, for a 0.3 value of the parameter xs, the heat release rate
would be underestimated of about 25 percent if the soot correction is neglected.

3 O = equivalence ratio (parameter which caractérises the degree of ventilation of the fire)

mass fuel to air ratio

stoichiometric mass fuel to air ratio
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FIGURE 1: Influence of soot generation on the HRR calculation by CDG calorimetry

EXPERIMENTA L RESULTS

Compounds

To provide a further analysis on the influence of soot production on heat release calculation in
fires, different chemicals were selected for small-scale experiments, according to their varying
sooting tendency. The substances studied in the experiments are isooctane, cyclohexane,
benzene, toluene, 1-2-4-trimethylbenzene, chlorobenzene and 1-2-dichlorobenzene. The mass
of the substances burned in the experiments ranged from 25 to 70 g.

Apparatus

The experiments were performed in the INERIS bench scale calorimeter (figure 2).

FIGURE 2: The INERIS bench-scale calorimeter.



As can be seen in figure 2, the INERIS calorimeter is fitted with a gas-tight air dilution system
at the level of the collection hood of the fire gases to allow safe use of the apparatus on toxic
chemical samples [23].

In all the experiments, a cylindrical sample holder made of glass with a diameter of 88 mm
was used. The infra-red heaters were usually not used in the experiments. However, for
chlorobenzene and trimethylbenzene an incident heat flux of 20 kW/m2 was applied until
ignition. For dichlorobenzene, an incident heat flux of 10 kW/m2 had to be maintained during
all test procedure to ensure flaming combustion.
For the measurement of total unburned hydrocarbons concentration (THC), a heated line
(180°C) was used to draw fumes sample (through heated filter, 180°C) to the analyser
(flame ionisation detector). This analyser was calibrated with the studied material by
evaporating a substance sample. The mass flow rate of air at the bottom of the quartz tube
was fixed at 0.2 nmVmin. For all experiments, this mass flow rate led to well-ventilated fire
conditions. The mass flow rate of fumes in the exhaust duct was regulated to a constant
value of 80 nmVh.

Results

From the measured data, the yields of carbon dioxide, carbon monoxide and unburned
hydrocarbons were calculated. The results (which are averages of three tests for each
substance) are given in table 2. Because measurements by direct sampling of soot or use of
optical properties were not still implemented, the yield of soot was calculated from the mass
balance of carbon:

f , fco , fmc a , fs =
 a

MCO2
 MCO Mjuel MS Mfuel

where,
a = Number of carbon atoms in the test molecule CaHbOcCla
Mfuei = Molecular weight of the burning material (g.mole" )

The parameters xs, xco and r were determined4 from the yields values ft (see table 2).

TABLE 2: Yields of combustion products and significance of the proposed soot correction

Substances

Isooctane
Cyclohexane
Benzene
Toluene
1,2,4 Trimethylbenzene
Chlorobenzene
1,2 Dichlorobenzene

fco2(g/g)fco(g'g)

3.00
2.98
2.51
2.56
2.25
0.97
0.62

) fco(g'g)

0.017
0.008
0.056
0.071
0.062
0.09
0.11

fmcis's)fs(g'g)

0.0017
0.0003
0.037
0.057
0.055
0.26
0.35

fs(g'g)

0.025
0.04
0.18
0.13
0.21
0.165
0.097

xco

0.006
0.003
0.022
0.028
0.027
0.093
0.18

xs

0.0083
0.013
0.072
0.051
0.093
0.17
0.15

r(%)

98.9
98.3
94.0
95.8
92.3
88.8
91.9

4 Calculations made with the actual calorimetric coefficients



As can be seen in table 2, the soot correction in the heat release rate calculation is negligible
for materials such as alkanes. However, this correction may become important for arènes
and substituted arènes even in well-ventilated fire conditions. As an example, for
chlorobenzene, the heat release rate would be underestimated by about 11% if the soot
correction is neglected.

CONCLUSION

Heat release rate in fires is one of the major parameter for fire safety engineering. Standard
CDG calorimetry making use of CO2 and CO measurements has been reviewed.

It has been studied whether sooting tendency of materials might be an important
consideration for accurate calculations of heat release rate. A correction accounting for soot
production on heat release rate calculation by CDG calorimetry has been proposed. The
importance of this correction factor depends on both the chemical nature of the material
being burned and the degree of ventilation of the fire.

A calorimetric coefficient E"s corresponding to soot generation has been introduced and
calculated. An average value of 191.7 kJ per mole of carbon generated is proposed with an
average variation of 25.9 %. Due to the importance of this variation, the actual value of the
calorimetric coefficient should be used in the calculations instead of the approximate value.

Similar considerations on soot related energy transfer on OC calorimetry is being studied and
wil l be discussed in a forthcoming publication.
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