
HAL Id: ineris-00972133
https://ineris.hal.science/ineris-00972133

Submitted on 3 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonlinear dynamics of low reynolds number round jets :
periodic attractors and transition to chaos

Ionut Danaila, Jan Dusek, Fabien Anselmet

To cite this version:
Ionut Danaila, Jan Dusek, Fabien Anselmet. Nonlinear dynamics of low reynolds number round jets :
periodic attractors and transition to chaos. 7. Conférence européenne de turbulence, Jun 1998, St
Jean Cap Ferrat, France. pp.105-108. �ineris-00972133�

https://ineris.hal.science/ineris-00972133
https://hal.archives-ouvertes.fr


NONLINEAR  DYNAMICS  OF LOW REYNOLDS NUMBER
ROÜND JETS: PERIODIC  ATTRACTORS AND TRANSITION
TO CHAOS

IONUT DANAILA 1-3, JAN DUSEK2 AND FABIEN ANSELMET3

1 I.N.E.R.I.S., 60550 Verneuil en Halatte, France
2 I.M.F., 2, rue Boussingault, 67000 Strasbourg, France
3 I.R.P.H.E., 12, Av. General Ledere, 13003 Marseiile, France

Direct numerical simulations have been shown [l, 2] to provide detailed
information on the dynamics and coherent structures of the near field of
a spatially developing axisymmetric jet. In [l] we demonstrated the shift
from helical to axisymmetric structures with increasing diametral Reynolds
number in the ränge [200; 500]. At the upper bound ofthis ränge, the vari-
cose m = 0 mode is the most amplified (m is the azimuthai wave-number).
The development of the unsteady flow is accompanied by the well known
phenomena: 2D Kelvin-HelmhoItz instability, roll-up and pairing, stream-
wise filaments and side—jets. The onset of the asymptotic chaotic state is
preceded by vortex rings reconnection and breakdown of the large struc-
tures due to strong stream-wise filaments. A similar transition process was
observed in temporal simulations by Melander et al. [3].

In this paper, we investigate the mechanisms leading to instationarity
and transition tö chaos for Reynolds numbers dose to the lower bound of
the mentioned ränge. The numerical implementation was the same äs that
described in [l] . The 3-D Navier-Stokes (NS) solver Nekton based on the
spectral element space discretization has been used to solve the incompress-
ibie NS equations in a cylindrical domain of stream-wise length equal to 15
nozzle diameters D and diameter roughiy equal to 10 D. Numerical shear
in a very small domain at the nozzle is responsible for the spontaneous
onset of the instationarity.

For these low Reynolds numbers, the amplification of the helical mode
is responsible for the jet syrametry breakingat the primary"instability. T)w
to the axisymmetry of the base flow there exist two linearly independent,
equally amplified, unstable modes, identified äs the counter-rotating helical
modes m == ±1. Their mutual interaction leads, dose to the instationarity
threshold, to a succession of 3 different regimes:
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Regime I, appearing for 0 < e = (Re - Recr)/Recr < 1.2%, is characterized
by a limit cycle dynamics with a single helical mode present in the flow;
Regime I I (1.2 < e < 3%) having a limit torus dynamics generated by
the presence of both m = ±1 modes with unequal amplitudes; and finally,
Regime I I I (3_< e < 4.5%)_wlth, again, a limit  cycleL dynamics, resulting
from the interaction of the two m == ±1 modes with equal amplitudes.

Figure l . Azimuthai velodty at a point located in the jet mixing layer, at 2 Bozzle
diametere downstream. The period of oscillations is about 6 time units. Comparison
between the simulated and theoretically predicted dynamics: limit  cycle (regimes I and
III ) and limi t torus (regime II) .

All  these stages could easily be predicted by a 5-th order weakly non-
linear theory describing the interaction ofthe helical modes m == ±1 (see [2]
for more details). The predictions of the theoretical model are in very good
agreement with the results ofdirect numerical Simulation, äs illustrated in
figure l.
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The chaotic state sets in about at e == 5% above the instationarity
threshold. Figure 2a shows the very slow decay ofthe limi t cycle resulting äs
an equilibrium ofthe two counter-rotating helical modes (Regime III) . After
very long transients, intermittent oscillations set in. The power spectra on
the right side of the figure show that a new, about 50% higher, frequency
appears.

a)

b)

Figure 2. Direct numerical Simulation at e ?s 5%. a) Azimuthai velocity signal and
corresponding spectra for the direct Simulation (same point äs in Fig. l), b) Iso-surfaces
of low pressure characterizing the amplified modes; 0174 (up) corresponds to the helical
mode of frequency /i and 025,1 (down) to the helical mode of frequency f s.

To detect the spatial structures responsibIeJor this new .frequency, we
analyzed the flow-field by the Fourier analysis proposed in [4J, and applied
with success in [2], to characterize the unstable symmetry brealdng modes.
It consists in computing temporal Fourier modes through-out the flow-field
in a sufficiently large time interval. In this case, we used a time intervai
corresponding to 17 periods of rapid oscillations visible in Fig. 2a.
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It appeared that only temporal Fourier modes Cn with n = l, 17 and
25 were really significant. The mode n = 17, corresponding to the basic
frequency (denoted /i), being the strengest and the mode n == 25 (corre-
sponding to /a) approaching progressively the level of mode n = 17, The
obtained temporal modes (c„) can be further decomposed into azimuthai
Fourier modes with index-m. The equilibrium ofthewi = dbl helicat modes,
characterizing the decaying Regime I I I , is thus expressed by comparing the
Fourier coefficients ci7,±i. The iso-pressure surfaces of dominating modes
{2Real[cr„,me~imö],  with n = 17,25 and m = l) are shown in Fig. 2b. It
clearly appears that the second frequency is associated with another helical
mode. It is interesting to note that the wavelengths of both modes have the
same ratio äs their periods, showing that these two modes have the same
phase velocity of about 0.5, value characteristic for a jet.

Figure 3. Direct numerical Simulation at e w 9%. Azimuthai velodty at the same point
äs in Fig. l. Intermittent part of the signal.

The observed onset of chaos can be characterized äs type II intermit-
tency. A similar behavior was observed in the simulations for 5% < e < 10%
above the instationarity threshold, when the chaos is completely developed
(Fig. 3). The same type II of intermittency was observed at high Reynolds
numbers, in the forced jet experiments of Broze & Hussain [5]. It is also
interesting to note that the transition to chaos for low Reynolds num-
bers involves only the interaction of helical modes, while for high Reynolds
numbers, the breakdown into turbulence is due to the interaction between
axisymmetric and helical modes [3].
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