NONLINEAR DYNAMICS OF LOW REYNOLDS NUMBER ROÜND JETS: PERIODIC ATTRACTORS AND TRANSITION TO CHAOS

IONUT DANAILA 1 -3 , JAN DUSEK 2 AND FABIEN ANSELMET 3 1 I.N.E.R.I.S., 60550 Verneuil en Halatte, France 2 I.M.F., 2, rue Boussingault, 67000 Strasbourg, France 3 I.R.P.H.E., 12, Av. General Ledere, 13003 Marseiile, France Direct numerical simulations have been shown [l, 2] to provide detailed information on the dynamics and coherent structures of the near field of a spatially developing axisymmetric jet. In [l] we demonstrated the shift from helical to axisymmetric structures with increasing diametral Reynolds number in the ränge [200; 500]. At the upper bound ofthis ränge, the varicose m = 0 mode is the most amplified (m is the azimuthai wave-number). The development of the unsteady flow is accompanied by the well known phenomena: 2D Kelvin-HelmhoItz instability, roll-up and pairing, streamwise filaments and side-jets. The onset of the asymptotic chaotic state is preceded by vortex rings reconnection and breakdown of the large structures due to strong stream-wise filaments. A similar transition process was observed in temporal simulations by Melander et al. [START_REF] Melander | Breakdown of a circular jet into turbulence[END_REF].

In this paper, we investigate the mechanisms leading to instationarity and transition tö chaos for Reynolds numbers dose to the lower bound of the mentioned ränge. The numerical implementation was the same äs that described in [l]. The 3-D Navier-Stokes (NS) solver Nekton based on the spectral element space discretization has been used to solve the incompressibie NS equations in a cylindrical domain of stream-wise length equal to 15 nozzle diameters D and diameter roughiy equal to 10 D. Numerical shear in a very small domain at the nozzle is responsible for the spontaneous onset of the instationarity.

For these low Reynolds numbers, the amplification of the helical mode is responsible for the jet syrametry breakingat the primary"instability. T)w to the axisymmetry of the base flow there exist two linearly independent, equally amplified, unstable modes, identified äs the counter-rotating helical modes m == ±1. Their mutual interaction leads, dose to the instationarity threshold, to a succession of 3 different regimes:

Seventh European Turbulence Conference, Saint-Jean Cap Ferrat, 30juin-3 juillet 1998, p. 105-108 Regime I, appearing for 0 < e = (Re -Recr)/Recr < 1.2%, is characterized by a limit cycle dynamics with a single helical mode present in the flow; Regime II (1.2 < e < 3%) having a limit torus dynamics generated by the presence of both m = ±1 modes with unequal amplitudes; and finally, Regime III (3_< e < 4.5%)_wlth, again, a limit cycleL dynamics, resulting from the interaction of the two m == ±1 modes with equal amplitudes. All these stages could easily be predicted by a 5-th order weakly nonlinear theory describing the interaction ofthe helical modes m == ±1 (see [START_REF] Danaila | Non-linear dynamics at a Hopf bifurcation with axisymmetry breaking m a jet[END_REF] for more details). The predictions of the theoretical model are in very good agreement with the results ofdirect numerical Simulation, äs illustrated in figure l.

The chaotic state sets in about at e == 5% above the instationarity threshold. Figure 2a shows the very slow decay ofthe limit cycle resulting äs an equilibrium ofthe two counter-rotating helical modes (Regime III). After very long transients, intermittent oscillations set in. The power spectra on the right side of the figure show that a new, about 50% higher, frequency appears. To detect the spatial structures responsibIeJor this new .frequency, we analyzed the flow-field by the Fourier analysis proposed in [4J, and applied with success in [START_REF] Danaila | Non-linear dynamics at a Hopf bifurcation with axisymmetry breaking m a jet[END_REF], to characterize the unstable symmetry brealdng modes. It consists in computing temporal Fourier modes through-out the flow-field in a sufficiently large time interval. In this case, we used a time intervai corresponding to 17 periods of rapid oscillations visible in Fig. 2a.

It appeared that only temporal Fourier modes Cn with n = l, 17 and 25 were really significant. The mode n = 17, corresponding to the basic frequency (denoted /i), being the strengest and the mode n == 25 (corresponding to /a) approaching progressively the level of mode n = 17, The obtained temporal modes (c") can be further decomposed into azimuthai Fourier modes with index-m. The equilibrium ofthewi = dbl helicat modes, characterizing the decaying Regime III, is thus expressed by comparing the Fourier coefficients ci7,±i. The iso-pressure surfaces of dominating modes {2Real[cr",me~i mö ], with n = 17,25 and m = l) are shown in Fig. 2b. It clearly appears that the second frequency is associated with another helical mode. It is interesting to note that the wavelengths of both modes have the same ratio äs their periods, showing that these two modes have the same phase velocity of about 0.5, value characteristic for a jet. The observed onset of chaos can be characterized äs type II intermittency. A similar behavior was observed in the simulations for 5% < e < 10% above the instationarity threshold, when the chaos is completely developed (Fig. 3). The same type II of intermittency was observed at high Reynolds numbers, in the forced jet experiments of Broze & Hussain [START_REF] Broze | Transition to chaos in a forced jet: intermittency. tangent bifurcations and hysteresis[END_REF]. It is also interesting to note that the transition to chaos for low Reynolds numbers involves only the interaction of helical modes, while for high Reynolds numbers, the breakdown into turbulence is due to the interaction between axisymmetric and helical modes [START_REF] Melander | Breakdown of a circular jet into turbulence[END_REF].
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 l Figure l. Azimuthai velodty at a point located in the jet mixing layer, at 2 Bozzle diametere downstream. The period of oscillations is about 6 time units. Comparison between the simulated and theoretically predicted dynamics: limit cycle (regimes I and III) and limit torus (regime II).
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 2 Figure 2. Direct numerical Simulation at e ?s 5%. a) Azimuthai velocity signal and corresponding spectra for the direct Simulation (same point äs in Fig. l), b) Iso-surfaces of low pressure characterizing the amplified modes; 0174 (up) corresponds to the helical mode of frequency /i and 025,1 (down) to the helical mode of frequency fs.
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 3 Figure 3. Direct numerical Simulation at e w 9%. Azimuthai velodty at the same point äs in Fig. l. Intermittent part of the signal.