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pREDICTION OF THE IMPACT SENSITIVITY BY NEURAL NETWORKS
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ABSTRACT

A method for optimizing the prediction of impact sensitivity of explosive molecules
by neural networks is presented.

" The database we used consisted of 272 molecules containing C,H,N,O of known
nsitivity and belonging to several chemical families.

Pertinent molecular desriptors were selected by a preliminary multilinear treatment.

The effects of the network's topology, the extent of the training, the choice of
descriptors were examined and optimized.

The predictions are satisfactory with a correlation coefficient of 0.94 obtained
through cross-validation. Moreover 95% of compounds are correctly classified in a 3-
sensitivity scale and the remaining 5% are classified as ambiguous which is very
encouraging for a real world implementation.

- The neural networks approach proves more accurate and more general than previous

methods.

;-INTRODUCTION :

The purpose of this work was the building of an efficient tool for the impact
sensitivity prediction in order to minimize the risks during the handling of explosive
compounds.

In previous works the field concerned separate families of compounds and
revealed the influence of various molecular parameters such as the oxygen balance
(Ref. 1) , the electronegativity (Ref. 2), the bond lengths (Ref. 3), the charge
dissymmetry (Ref. 4), the presence of specific groups (Ref. 5),... Moreover, for
most of these studies, the influence of these parameters was considered to be linear
and taken into account separately which certainly induces a loss of precision for the
predictions.

In order to overcome these difficulties, we decided to build an experimental
data base as large as possible and we used data processing methods able to take into
account simultaneously several non-linear correlations: the neural networks.

II-THE DATA BASE :
The initial data base was built from the literature. It consisted of 204 molecules
CxHyNzOt the sensitivity of which was measured by the same method developed by
- the Explosive Research Laboratory (USA) (Ref. 6). These molecules belong to nine
families: nitroaromatics, nitroaliphatics, nitramines, nitric esters, nitrotriazoles,
nitropyridines, nitroimidazoles, nitrofurazanes, others. The others 68 compounds
were disgarded because the sensitivity was measured with a different protocol or
because they were clearly non explosive (musks).
The geometry of each of these molecules has been optimized using the semi-
empirical program MOPAC (Ref. 7). '
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Some molecular parameters have been taken out from these quantum
mechanics calculations and added to the list of the parameters which are the most

frequently used in the literature.

Molecular Parameters
1: oxygen balance 19: number of N=N bonds
2: molecular electronegativity 20: number of N=N bonds
3: number of CO2 groups 21: number of C=N bonds
4: number of NO2-Csp2 bonds 22: number of C atoms
5: number of NO2-Csp3 bonds 23: number of H atoms
6: number of NO2-N bonds 24: number of N atoms
7: number of NO2-O bonds 25: number of O atoms
8: number of rings 26: 100/molecular weight
9: number of -NH2 groups 27: indicator of aromaticity (O or 1)

10: number of -OH groups
11: number of -C(NO2)3 groups

12: -CH in ¢ of a nitroaromatic

13: indicator of symmetry
14: number of -C=0 groups
15: number of Y-O-X groups
16: number of -C=C bonds

17: number of -C=C bonds
18: number of -C=N bonds

37: formation energy
39: ionization potential

30:

38

: sum of the nitro's charges

: average of the nitro's charges
disymmetry

nitro's charges disymmetry

per molecular weight

: length of the longest X-NO2 bond

: length of the shortest X-NO2 bond

: highest potential for a X-NO2 bond

: smallest potential for a X-NO2 bond

: average potential for a X-NO2 bond
: average length of the X-NO2 bonds
: dipole

Parameters 1 to 27 are obtained from the topology of the molecule whereas
parameters 28 to 39 are calculated with MOPAC package.

" - DATA PREPROCESSING:

The determination of the pertinent parameters was carried out by a ¢k
multivariate linear regression. After the elimination of the non-signift

assical

cant

parameters, the predictions were tested by cross validation. In that procedure, 0
linear regression is performed on all the molecules except one, then the prediction
the sensitivity is made for the disgarded molecule. This operation is repeated for

the data base.

In order to obtain a predicting method accessible to users who do not pos$® s

any quantum chemical software, two different processings were performed-
first one concerns only the parameters 1 to 27: i.e. no quantum mec

hanics

calculations are involved; it is a purely topological coding. The second one t
into account all of the 39 parameters; it is a quanto-topological coding.

A- Topological coding

o . . : a8
After the multilinear regression analysis, 16 parameters were dlsgafded

having partial F<2.

The following table presents the remaining parameters :



Table 1: Muitilinear regression results for the topological coding

Correlation factor =0,916 n=204

Standard-deviation s=0.18

Equation Stand. dev. Partial-F

y = 1,065
- 0,140 x1 0,015 87,321
- 0,146 x4 0,026 31,611
- 0,205 x5 0,028 54,974
-0,351 x6 0,033 113,078

- 0,241 x7 0,059 16,649
- 0,146 x12 0,054 7,288
- 0,441 x20 0,052 72,001
+ 0,039 x23 0,009 20,188
+ 0,049 x24 0,001 25,235
+ 0,064 x25 0,011 36,230
+ 0,082 x26 0,019 18,662

Figure 1 presents the quality of the prediction tested by cross validation. A’
perfect value corresponds to a point located on the diagonal.
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Figure 1: MLR Cross validation for the topological coding. (R=0.89, s=0.18, n=204)

An average correlation factor of 0.89 is obtained by cross validation.

B-Quanto-topological coding

The same procedure has been carried out with all the molecular parameters
including those calculated from MOPAC.
In this case only 13 parameters remain.




Table 2: Muitilinear regression results for the quanto-topological codm y

Correlation factor = 0,918 n=204

Standard deviation = 0,18

Equation Stand. dev. Partial-F

y= 2,411

-0,133 x1 0,015 75,469
- 0,129 x4 0,040 10,300
-0,181 x5 0,041 18,845
- 0,267 x6 0,054 24,442
- 0,200 x7 0,071 7,849
-0,230 x12 0,052 | 19,267
- 0,390 x20 0,052 55,402
+ 0,035 x23 0,010 12,353
+ 0,075 x25 0,017 18,240
+ 0,075 x26 0,019 15,740
- 0,219 x33 0,082 7,132
+ 0,001 x37 0,001 2,206
- 0,086 x39 0,020 17,401

The cross validation procedure gives a correlation coefficient of 0.89 whmﬁ !
equivalent to what was obtained by the purely topological coding.
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Figure 2: MLR Cross validation for the quanto-topological coding
(R=0.89, s=0.18, n=204)

IV-NEURAL PROCESSING

A branch of artificial intelligence is now growing fast: the connexxomsm.

concerns the study of the behavior of assemblies of formal neurons which 3
inspired by a very crude model of the brain. Recent progresses in this field gav

to promising results in pattern recognition, diagnosis, data processing.... o




A-The formal neuron:

A formal neuron is an automaton which is characterized by a state of activity
rated between O and 1. This state is defined by the excitations received from other
neurons through the synaptic connections which are the bonds between the neurons
of a network.

INPUT

\\ 1 neuron
+1 OUTPUT
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0 ,

—

Figure 3: Scheme of a formal neuron

The excitations reaching a neuron are weighted by coefficients depending on
the synaptic connections (the synaptic weights) then they are added.

The activity of the neuron is then fixed to a value between 0 and 1 by using a
sigmoidal function of the sum of the weighted excitations and is transmitted to the
other neurons through synaptic connections.

B-Layered Networks:

Various types of neural networks may be considered depending on the
interaction schemes between the neurons: layered networks, fully or partially
connected networks, recurrent networks....(Ref. 8)

Each of these types have advantages and disadvantages and its own domain of
application.

Our purpose (prediction of a property) led us to choose the layered networks
since their structure is very well fitted to this problem.

These networks are made of neurons arranged in layers. The neurons of a
layer are not connected together. They receive excitation only from the neurons of
the former layer and they transmit their activity only to the neurons of the next layer
(Figure 4),

Usually a bias neuron whose activity state is always 1 is added in the input and
hidden layers. .

Two layers play a special role: the layer which do not receive any excitation
which is called the input layer and the layer which do not transmit any excitation and
which is called the output layer.

It is important to notice that the state of activity of the neurons of the output
layer only depends on the state of activity of the neurons located in the input layer
and of the synaptic weights of the network.

Therefore such a network may be considered as a "black box" which answers
with the excitations of its output neurons to the excitations of its input neurons. The
choice of the synaptic weights governs these answers.




j neuron

\ synaptic connection with a

Cij synaptic weight

Figure 4: Scheme of a layered neural network

C-Training and Generalization: ‘

The prediction of a property of an object is the association of a dz
describing the property to another data set describing the object. The data
describing the object are called the descriptors.

For example the value of the impact sensitivity may be associated Witﬁ
oxygen balance, the presence of some groups, etc...

The prediction of course has to be supported by experimental data,.,
prototypes for which the association description-prediction is already know
Therefore, in our case, we had to possess a set of molecules for which the sens
was known.

Before any prediction, the synaptic weights have to be modified in suc
that, for each prototype, the difference between the prediction and the known
is as small as possible. This step is the "training" of the network. It is perform
an iterating procedure called "Gradient Backpropagation” (Ref. 8). After this
the synaptic weights contain the data extracted from the prototypes.

It is then possible to make predictions. In that case, the descripto:
molecule which does not belong to the training set are the inputs of the network. The
information is propagated through the network towards the output layer whereﬁ
pred1ct10n is collected.

'D- Precautions Jor using networks:

The generalization aptitude, in other words, the level of prediction acc
that can be obtained, is of course the essential quality of a network. This apm
depends on many factors: the quality of the experimental data (number, repartition),
the adequacy of the network structure to the complexity of the problem, the
pertinence of the descriptors..

A rigorous optimization of these factors has not yet been prposed.

Nevertheless, a certain number of constraints on the structure of the ne
has to be taken into account. '

The number of neurons in the input layer is determined by the numbe
parameters used to describe the prototype (here a molecule) and the numbe;
neurons in the output layer depends on the descriptors associated with the predic!

Furthermore, the number of neurons in the hidden layer must be cho
such a way that the number of synaptic weights to be determined during the lean
phase does not exceed the number of the prototypes (no more unknowns
equations). o e




Generally speaking, for a given problem, the optimal network architecture will
pe that which minimizes the number of connections, while allowing the use of
descriptors that are rich enough to enable the discrimination of the prototypes.

Indeed, we can verify that, for a given problem, the generalization aptitude of
this type of network first increases with the number of its connections until the
network is flexible enough to fully take into account the complexity of the problem
and enables proper learning conditions.

When this aptitude is reached, any increase in the number of connections will
induce an excess in the network flexibility and thus reduce the generalization
performance.

These remarks are comparable to those made for a polynomial interpolation.

Generally speaking, a statistical preprocessing of the prototypes submitted to a
network is very useful. By lowering the number of descriptors, it allows the
minimizing of the number of neurons in the input layer, and therefore the number of
connections in the network.

E- Results:
After the optimization of the structure of the network with 204 molecules, the
following results were obtained: .

a-Topological coding:
The descriptors were those previously chosen by a statistical treatment. The
-optimal network was a 11-4-1 (11 neurons in the mput layer, 4 neurons in the
hidden layer and 1 neuron in the output layer.
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Figure 5: NN Cross validation for the topological coding(R=0.94, s=0.13, n=204).

A cross validation gave a correlation coefficient of 0.94 which is the best

value we have obtained. ’
The figure 5 presents these results. One can notice that the correlation
coefficient is clearly better (0.94) than in the multivariate analysis (0.89) and that




there are no more badly predicted compounds which is very promising for a rea{
of this method.

b- Quanto-topological coding:

A similar treatment had been performed on these data.
The best network has the 13-3-1 structure. A correlation factor of 0.92 has been

‘obtained which is slightly inferior to the purely topological codmg
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Figure 6: NN Cross validation for the quanto-topological coding
- (R=0.92, s=0.17, n=204).

Therefore the results obtained by a neural treatment are clearly better.
those obtained by a classical multilinear treatment. They reveal that this new dz
processing method is very promising by allowing non linear correlations.

This method has also been tested on a separate prediction set composed of
molecules that were either non explosive (musks) or whose sensitivity was measur
with other protocols. The results are quite satisfactory and the quanto-topological -
treatment seems to give better results in these cases which promote the use of sucha-
coding even if it needs the use of a semi-empirical quantum chemistry program. - - -

E- Improvement of the results:

The main purpose of this work was the building of a prediction tool dedicated
to a real use. Therefore it was of primary importance to estimate the robustness of
the prediction.

Therefore, rather than calculatlng a value of the sensitivity, we chose to
classify a molecule in 3 classes: ’

class 1: High sensitivity (Scm<H<87cm)
class 2: Medium sensitivity (88cm<H<160cm)
class 3: Low sensitivity (160cm<H<320cm)

The output layer of the network contains 3 neurons; one for each class. Durmg
the training step, the activities of these neurons are set to values that are the
probabilities of belonging to a class. They depend on the value of the sensitivi
compared to the extreme values of a class. For example, a sensitivity H=160cm can:




pe classified in class 2 and class 3 with the same probability. On the other hand, a
sensitivity H=123cm which is the center of class 2 has a maximum probability of
being classified in class 2.

During the prediction, the analysis of the activities of the 3 neurons of the
output layer give informations on the quality of the prediction.

For example, in the case of the prediction of the sensitivity of a class 3
compound, the perfect prediction should be C1=C2=0 and C3=1 (C1: activity of
nearon 1, C2: activity of neuron 2, C3: activity of neuron 3 with C1+C2+C3=1). In
reality these values are never reached.

Several configurations may be obtained:

1- If C1=C2=e and C3=1-2e, with e<0.15 then the network considers that
the sensitivity belongs to class 3 and that the prediction is of good quality.

2- If C1=0 and C2=C3 the prediction is considered to be relativiely
ambiguous.

3- If C1=C2=C3 the prediction is considered to be completely ambiguous.

4- C1>1-2¢ and C2 =C3=¢ or C2>1-2¢ and C1=C3=e

The first case is the most favorable: the network provides a good classification
without ambiguity.

Cases 2 and 3 are also acceptable since the network tells the user to be careful
with the prediction.

Case 4 is unacceptable: the network provides a wrong prediction without
ambiguity.

This method has been tested for both coding schemes. The structures of the
networks were 11-2-3 and 13-3-3.

The results were satisfactory: 95% of the molecules were correctly classified
and the remaining 5% were ambiguous answers. Case 4 was never observed which
is encouraging for a real use of this method. :

V-CONCLUSION:

The methodology we describe here seems to be promising: it concerns a large
variety of molecules and the most significant parameters are simultaneously taken
into account. Moreover, non linear correlations are directly considered which is
certainly favorable for a complicated phenomenon such as the impact sensitivity.

However, the quality of the prediction should certainly be much higher if the
experimental data base were improved by using a more accurate way for measuring
the impact sensitivity, especially for the low sensitivity compounds.

Nevertheless, this new methodology could easily be used with this improved
data base which make us think that neural networks will certainly have a brilliant
future in the field of explosives and pyrotechnics.
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