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PREDICTION OF THE IMPACT SENSrnVITY BY NEURAL NETWORKS

A methodfor optimizing the prediction ofimpact sensitivity ofexplosive molecules hv neural networks is presented.

The database we used consisted 0/272 molecules containing C,H,N,0 ofknown sensitivity and belonging to several chemicalfamilies.

Pertinent molecular desriptors were selected by a preliminary multilinear treatment. The effects of the network's topology, the extent of the training, the choice of descriptors were examined and optimized.

The predictions are satisfactory with a correlation coefficient of 0.94 obtained through cross-validation. Moreover 95% of compounds are correctiy classißed in a 3sensitivity scale and the remaining 5% are classißed äs ambiguous which is very encouragingfor a real worid implementation.

The neural networks approach proves more accurate and more general than previous methods.

1-INTRODUCTION:

The purpose of this work was the building of an efficient tool for the impact sensitivity prediction in order to minimize the risks during the handling of explosive compounds.

In previous works the field concemed separate families of compounds and revealed the influence of various molecular parameters such äs the oxygen balance (Ref. l) , the electronegativity (Ref. 2), the bond lengths (Ref. 3), the Charge dissymmetry (Ref. [START_REF] Cheret | Detonation in Condensed explosives[END_REF]), the presence of specific groups (Ref. 5),... Moreover, for most of these studies, the influence of these parameters was considered to be linear and taken into account separately which certainly induces a loss ofprecision for the predictions.

In order to overcome these difficulties, we decided to build an experimental data base äs large äs possible and we used data processing methods able to take into account simultaneously several non-linear correlations: the neural networks.

n-THE DATA BASE:

The initial data base was built from the literature. It consisted of 204 molecules CxHyNzOt the sensitivity of which was measured by the same method developed by the Explosive Research Laboratory (USA) (Ref. 6). These molecules belong to nine families: nitroaromatics, nitroaliphatics, nitramines, nitric esters, nitrotriazoles, nitropyridines, nitroimidazoles, nitrofürazanes, others. The others 68 compounds were disgarded because the sensitivity was measured with a different protocol or because they were clearly non explosive (musks).

The geometry of each of these molecules has been optimized using the semiempirical program MOPAC (Ref. 7). Some molecular parameters have been taken out from these quantum mechanics caiculations and added to the list of the parameters which are the most frequently used in the literature. The determination of the pertinent parameters was carried out by a classical multivariate linear regression. After the elimination of the non-significs 10 ' parameters, the predictions were tested by cross validation. In that procedure, t" 6 linear regression is perfönned on all the molecules except one, then the prediction o the sensitivity is made for the disgarded molecule. This Operation is repeated for a " the data base.

In order to obtain a predicting method accessible to users who do not P 05 âny quantum chemical Software, two different processings were perfönned. l first one concerns only the parameters l to 27: i.e. no quantum mechai"ĉ aiculations are involved; it is a purely topological coding. The second one tajinto account all of the 39 parameters; it is a quanto-topological coding.

A-Topological coding , Âfter the multilinear regression analysis, 16 parameters were disgarde having partial F<2.

The following table presents the remaining parameters : 

B-Quanto-topological coding

The same procedure has been carried out with all the molecular parameters including those caiculated from MOPAC.

In this case only 13 parameters remain. 

A-Theformal neuron:

A formal neuron is an automaton which is characterized by a state of activity rated between 0 and l. This state is defined by the excitations received from other neurons through the synaptic connections which are the bonds between the neurons of a network.

INPUT Figure 3: Scheme of a formal neuron

The excitations reaching a neuron are weighted by coefficients depending on the synaptic connections (the synaptic weights) then they are added.

The activity of the neuron is then fixed to a value between 0 and l by using a sigmoi'dal fünction of the sum of the weighted excitations and is transmitted to the other neurons through synaptic connections.

B-Layered Networks:

Various types of neural networks may be considered depending on the interaction schemes between the neurons: layered networks, fully or partially connected networks, recurrent networks....(Ref. [START_REF] Rumelhart | Parallel distributed processing[END_REF] Each of these types have advantages and disadvantages and its own domain of applicaüon.

Our purpose (prediction of a property) led us to choose the layered networks since their structure is very well fitted to this problem.

These networks are made of neurons arranged in layers. The neurons of a layer are not connected together. They receive excitation only from the neurons of the former layer and they transmit their activity only to the neurons of the next layer (Figure 4).

Usually a bias neuron whose activity state is always l is added in the input and hidden layers.

Two layers play a special role: the layer which do not receive any excitation which is called the input layer and the layer which do not transmit any excitation and which is called the Output layer.

It is important to notice that the state of activity of the neurons of the output layer only depends on the state of activity of the neurons located in the input layer and ofthe synaptic weights ofthe network.

Therefore such a network may be considered äs a "black box" which answers with the excitaüons of its output neurons to the excitations of its input neurons. The choice of the synaptic weights govems these answers. synaptic connection with a Cij synaptic weight 

C-Training and Generaliwtion:

Thie prediction of a property of an object is the association of a dala 5 describing the property to another data set describing the object. The datal describing the object are called the descriptors. ^18 For example the value of the impact sensitivity may be associated wjtll oxygen balance, the presence of some groups, etc.... ^lfey,»g' The prediction of course has to be supported by experimental data:i0? prototypes for which the association description-prediction is already knol^SitT hereföre, in our case, we had to possess a set ofmolecules för which the sensifiyŵ as known.

• '• ^IH Beföre any prediction, the synaptic weights have to be modified in süCh^Sl that, för each prototype, the difference between the prediction and the knownl® is äs small äs possible. This step is the "training" of the network. It is perfbrmIlB an iterating procedure called "Gradient Backpropagation" (Ref. 8). After this Ä the synaptic weights contain the data extracted from the prototypes.

• 'iSB l It is then possible to make predictions. In that case, the descriptolsl^;,, molecule which does not belong to the training set are the inputs ofthe networic.'ESi införmation is propagated through the network towards the Output layer whe%l|(|p rediction is collected. '^laSiS*

D-Precautions for using networks:

The generalization aptitude, in other words, the level of prediction accuracy that can be obtained, is of course the essential quality of a network. This aptitafe depends on many factors: the quality of the experimental data (number, repartitioa), the adequacy of the network structure to the complexity of the problem, tte pertinence of the descriptors... ,^stt A rigorous optimization of these factors has not yet been prposed. Nevertheless, a certain number of constraints on the structure of the netw|Bĥ as to be taken into account. ^% The number of neurons in the input layer is determined by the number | | Parameters used to describe the prototype (here a molecule) and the numbe|V* neurons in the Output layer depends on the descriptors associated with the pseässSF urthermore, the number of neurons in the hidden layer must be chose| such a way that the number of synaptic weights to be determined during the leäca phase does not exceed the number of the prototypes (no more unknownsfi| equations).

---Generally speaking, for a given problem, the optimal network architecture will be that which mininüzes the number of connections, while allowtng the use of descriptors that are rieh enough to enable the discrimination ofthe prototypes.

Indeed, we can verify that, for a given problem, the generalization aptitude of this type of network first increases with the number of its connections until the network is flexible enough to fülly take into account the complexity of the problem and enables proper leaming conditions.

When this aptitude is reached, any increase in the number of connections will induce an excess in the network flexibility and thus reduce the generalization performance.

These remarks are comparable to those made for a polynomial interpolation. Generally speaking, a statistical preprocessing of the prototypes submitted to a network is very useful. By lowering the number of descriptors, it allows the minimizing of the number of neurons in the input layer, and therefore the number of connections in the network.

E-Results:

After the optimizaüon of the structure of the network with 204 molecules, the following results were obtained: a-Topological coding: The descriptors were those previously chosen by a statistical treatment. The optimal network was a 11-4-1 (11 neurons in the input layer, 4 neurons in the hidden layer and l neuron in the output layer. A cross validation gave a correlation coefficient of 0.94 which is the best value we have obtained.

The figure 5 presents these results. One can notice that the correlation coefficient is clearly better (0.94) man in the multivariate analysis (0.89) and that he classified in class 2 and class 3 with the same probability. On the other hand, a sensitivity H=123cm which is the center of class 2 has a maximum probability of being classified in class 2.

During the prediction, the analysis of the activities of the 3 neurons of the output layer give informaüons on the quality of the prediction.

For example, in the case of the prediction of the sensitivity of a class 3 compound, the perfect prediction should be C1=C2=0 and C3=l (Cl: activity of neuron l, C2: activity ofneuron 2, C3: activity ofneuron 3 with C1+C2+C3=1). In reality diese values are never reached.

Several configuraüons may be obtained: 1-If Cl=C2==e and C3=l-2e, with e<0.15 then the network considers that the sensitivity belongs to class 3 and that the prediction is of good quality.

2-If Cl=0 and C2=C3 the prediction is considered to be relativiely ambiguous.

3-If C1=C2=C3 the prediction is considered to be completely ambiguous. 4-Cl>l-2e and C2 =C3=e or C2>l-2e and Cl=C3=e The first case is the most favorable: the network provides a good classification without ambiguity.

Cases 2 and 3 are also acceptable since the network teils the user to be carefül with the prediction.

Case 4 is unacceptable: the network provides a wrong prediction without ambiguity.

This method has been tested for both coding schemes. The structures of the networks were 11-2-3 and 13-3-3.

The results were satisfactory: 95% of the molecules were correctiy classified and the remaining 5% were ambiguous answers. Case 4 was never observed which is encouraging for a real use of this method.

V-CONCLUSION:

The methodology we describe here seems to be promising: it concems a large variety of molecules and the most significant parameters are simultaneously taken into account. Moreover, non linear correlations are directiy considered which is certainly favorable for a complicated phenomenon such äs the impact sensitivity.

However, the quality of the prediction should certainly be much higher if the experimental data base were improved by using a more accurate way for measuring the impact sensitivity, especially for the low sensitivity compounds.

Nevertheless, this new methodology could easily be used with this improved data base which make us think that neural networks will certainly have a brilliant future in the field of explosives and pyrotechnics.

Figure l presents

  Figure l presents the quality of the prediction tested by cross validation. A' perfect value corresponds to a point located on the diagonal.

Figure l :

 l Figure l: MLR Cross validation for the topological coding. (R=0.89, s=0.18, n=204) An average correlation factor ofO.89 is obtained by cross validation.

Figure 2 :

 2 Figure 2: MLR Cross validation for the quanto-topological coding (R=0.89, s=0.18, n=204)

Figure 4 :

 4 Figure 4: Scheme of a layered neural network

Figure 5 :

 5 Figure 5: NN Cross validation for the topological coding(R=0.94, s=0.13, n=204).

Table 2 :

 2 Multilinear regression results for the quanto-topological coding

	Con-elationfactor=0,918 n=204		
	Standard deviation =0,18		
	Equation	Stand, dev.	Partial-F
	y=	2,411 -0,133x1	0,015	75,469
		-0,129x4	0,040	10,300
		-0,181x5	0,041	18,845
		-0,267x6	0,054	24,442
		-0,200 x7	0,071	7,849
		-0,230x12	0.052	19,267
		-0,390 x20	0,052	55,402
		+ 0,035 x23	0,010	12,353
		+ 0,075 x25	0,017	18,240
		+ 0,075 x26	0,019	15,740
		-0,219x33	0,082	7,132
		+ 0,001 x37	0,001	2,206
		-0,086 x39	0,020	17,401
	The cross validation procedure gives a correlation coefficient ofO.89 whic|ä
	equivalent to what was obtained by the purely topological coding.	äfti
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there are no more badly predicted compounds which is very pronüsing för a realR of this method. A b-Quanto-topological coding: A similar treatment had been perfoimed on these data. The best network has the 13-3-1 structure. A correlation factor ofO.92 has been obtained which is slightly inferior to the purely topological coding.

Figure 6: NN Cross validation for the quanto-topological coding (R=0.92, s=0.17, n=204).

Therefore the results obtained by a neural treatment are clearly better f those obtained by a classical multilinear treatment. They reveal that this new processing method is very promising by allowing non linear corrclations. This method has also been tested on a separate prediction set composed of^ng molecules that were either non explosive (musiks) or whose sensitivity was measuielt? with other protocols. The results are quite satisfactory and the quanto-topological treatment seems to give better results in these cases which promote the use ofsucha coding even if it needs the use of a semi-empirical quantum chemistry program. S

F-Improvement ofthe results:

The main purpose of this work was the buüding of a prediction tool dedicated to a real use. Therefore it was of primary importance to estimate the robustness of the prediction.

Therefore, rather than caiculating a value of the sensitivity, we chose (Bis classify a molecule in 3 classes: class l: High sensitivity (5cm<H<87cm) Jg class 2: Medium sensitivity (88cm<H<160cm) ĉlass 3: Low sensitivity (160cm<H<320cm) ^S The output layer of the network contains 3 neurons; one for each class. During, the training step, the activities of these neurons are set to values that are t||| probabilities of belonging to a class. They depend on the value of the sensitivi^J compared to the extreme values of a class. För example, a sensitivity H==160cm ca^|