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ABSTRACT

The data processing for in situ measurements by overcoring (or stress-relief in general) is

classically performed by the least squares method. This appears well suited, because the relation
y = F (0) between stress tensor (6) and displacements or strain (Y) is linear. In this case, the unknowns
are stresses, and the known data of the problem are the measured displacements or strains and the elastic

properties of the rock, those are preferably measured in-situ (biaxial test).

However if we wish to determine the elastic properties (E matrix in the general case) from the

overcoring test itself, the previous relation becomes Y = F (6,E). This relation is non linear; to resolve

it numerous optimization techniques are available. The optimization methods without gradient

calculation seems well adapted for this problem.

INTRODUCTION

The knowledge of natural stress state in a
rock mass is often an essential datum to solve
most modelling problems in geomechanics.
Among the quantitative methods of in situ stress
measurements at great depth in a borehole,
overcoring is usually preferred (fig. 1). Two
different types of measurements are obtained:
radial displacements with the “U.S.B.M cell”,
and strains with the “CSIR triaxial strain cell” or
the “CSIRO hollow inclusion gauge” which was
developped in Australia (fig. 2).

The determination of the stress tensor is
done by assuming the rock as perfectly elastic and
homogeneous. We obtain six components of the
stress tensor expressed in a fixed reference sytem
as follow :

(a) First of all, determine the elastic
constants of the rock by means of loading and
unloading tests on the core obtained from
overcoring or by uniaxial compression tests on
rock specimens drilled out in the appropriate
directions.



(b) Then, find the equations for the
measurements (displacements or strains) in terms
of the elastic constants and six stress components.

(c) Invert the equations by using the least
squares method or similar methods.

After presenting the classical technique for
data analysis we will discuss new numerical
methods, that allow the determination of elastic
properties and stresses from overcoring data.

TECHNIQUES OF DATA ANALYSIS
FOR STRESS MEASUREMENT

The determination of the stresses with in
situ overcoring measurement leads to resolve a
linear system where the second member is the
measurement vector (Y) and the unknowns are
the six stress tensor components (6). The number
of linear equations is usually greater than six,
which involves that we can’t inverse the matrix
(A). We use in that case the least squares method
wich consists of finding the solution which
minimizes the residual error :

AX =Y with X estimator of ¢
e =residual error=Y - AX
¢'e minimum = X = (At A)! AtY

This method gives many parameters which
allows to estimate the quality of the linear
regression such as the probability law of X,
estimation of the stress tensor in a fixed reference
system. But no information is given on the
principal stresses because the relation between
these, the six directions and shear stress tensor
components is highly non-linear. In order to solve
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Fig. 1 : Steps of overcoring method

this problem, we used a statistical approach. The
probability law of the principal stresses and their
orientations is determined by using statistical
simulations of the law given by the least squares
method.

Other similar methods of data analysis for
stress measurements like the weighted least
squares or the residual values methods [4] could
be used but results are almost identical. The
probalistic approach developped by Tarantola [§]



and based on the maximum of likelihood gives
interesting informations but the results must be
carefully interpreted.

cable Rosette C

Rosette A

Fig. 2 : CSIRO cell

NEW FORMULATION OF THE
PROBLEM

The theory presented here is based on linear
elastic behaviour. We suppose that elastic
constants and stresses are separate variables this
means that the values of the elastic parameters are
not depending on the rock stress state. This
hypothesis is very important and, in general,
implicit when the elastic constants are determined

in laboratory.

Classically, these parameters are taken as
data of the problem. The disadvantages of this
method are that significant variations of the
modulus values can occur from point to point in
the measurement area, and that the properties of
the rock can change between the moments when
the in situ measurements are done and the
determination of the elastic constants (alteration
of the rock, humidity, ...).

The relation between the stress tensor (6)
and the observed measurements (Y ) is linear.
We have :

Y, = A.c where A is the compliance
matrix.

The coefficients of the matrix A depend on
the properties of the rock and the orientation of
the hole. For special cases, isotropic bodies for
example [10], there are known explicitly. In
general[1], there are determined from computing.
Also, A is a function of the elastic constant vector
E.

Y, =A@E).c

The idea is to consider E as unknown and

determine 6 and E so that Y_, = A (E).6 the

calculated displacements or strains are equivalent
t0Y . Thisproblem can be solved by minimization
of the function f (E,6) =Y Yl where || . Ilp
designate the norm of the vector Y Y .
Usually, three vectorial norms are used :



ﬂx“1=zi,|xi|
ﬂx“z:(ZXf)llz

1
||x|| = Max lxl

The dimension of the vectorE canbe 2,5 or

9if we consider therock as isotropic, transversaly

isotropic or orthotropic. Also the total number of
unknorwns could vary between 8 and 15.

ALGORITHMS OF OPTIMIZATION
USED

The classical techniques of optimization
using gradients and hessian matrix cannot be
used in ourcase. In general we have noinformation
on the derivability of the function {, thatis why we
used two algorithms for unconstrained
minimization of a function of several variables
that does not require the evaluation of partial
derivatives : POWELL’s and MIFFLIN’s
algorithm (see Appendix A and B for more details
on the methods).

Like many methods of optimization, these
algorithms must be initialized. For any results,
we must verify that the minimum obtained is not
relative and that we have really f(E,5)=0.Inour
case, there is not only one solution in general.
The results given by the two methods are the
nearest of the initial values. |

The Powell’s algorithm [7] is easy to
implement. It can be link with the family of
methods using conjugate directions. The basic
idea is to find the minimum of the function

successively in n conjugates directions (n is the
number of variables). This method requires at
each iteration n one variable minimization. For
this we used a golden section method [3,6].

The Mifflin’s algorithm [5] is a second
order extension of the method of local variations
and it does not require any exact one variable
minimization. The method retains the local
variations property of accumulation points. This
extension makes the algorithm an approximate
Newton method and its convergence is in general
super-linear.

The efficiency in the convergence of the
two methods is measured by the number of
evaluations of the function F. Mifflin needs in
general fewer calculations than Powell. For the
same initial values, the results of the algorithms
are identical except when there are several
solutions in a limited space. In this case, Mifflin
gives the result which is the nearest to the initial
solution while Powell give a result which could
be different.

APPLICATION

We present here an example of use of these
two methods. We consider the rock to be isotropic.
We used data from the CSIRO HI cell for which
the values of the elastic constants and the
components of the stress tensor were known. The
tensor corresponds to the stress state existing ata
depth of 450 m. The minor principal stress 6, is
almost vertical and its value corresponds to
overburden weight (o, = 12,1 MPa).

The first test considered was with fixed



Young’s modulus and Poisson’s ratio. In this case
the results obtained with the two methods are
exactly identical (table 1) to the exact values,
even with afarinitial solution. Thus, these methods
can be used like the classical least square method
when the rock properties are well defined.
Table 2 shows an example where all the

parameter |exact values intial valuos MIFFLIN POWELL

Oy 18,8 15 18,8 18,8
Oy 23,1 15. 23,1 23,1
O3 12,1 15 12,1 12,1
Tyy 2,1 5 21 2,1
Tyz -0,4 5 04 0,4
Tx -1,0 5 -1,0 -1,0

nb evaluations 71 1340

Table 1

parameters are unknown and the initial solution is
close to the exact values. In this case, the
algorithms converge to theexact values. However,
when the initial solution is relatively far from the
exactvalues, the results are physically acceptable
but the solution is not good. It shows clearly, that
this algorithms must be used carefuly.

If we consider that the principal vertical

parameter exact values Inttial values MIFFLIN POWELL
E 75000 72000 75734 75309
v 0,3 0,3 0,30 0,30
Ox 18,8 18 18,8 190
Gy 23,1 25 233 234
C; 12,1 13 122 12,4
Txy 2,1 3 2,1 2,1
T yz 04 0,5 04 04
T -1,0 0,5 1,0 0,9
nb evz:t;:aﬁons 778 2189

Table 2

parameter axact values initial vaiues MIFFLIN POWELL
75000 70000 51183 55402
v 03 0,25 0,26 0,28
Ox 18,8 15 123 13,0
Oy 23,1 15 15,3 15,3
O; 12,1 15 7.3 83
Ty 2,1 3 1,3 1,6
Ty 04 1 0,0 0,2
Tax 1,0 1 04 0,0
nb evaliations
o 204 2077
Table 3
stress is known (tyz,‘cxz, o, known), wich is a

common assumption in many cases, the results
obtained for the unknown parameters are as
expected (table 4); the same if v is fixed and o, is
unknown (table 5).

parameter | exact values initial values MIFFLIN POWELL
E 75000 60000 73865 75001
v 0,3 0,25 0,30 0,30
Oy 18,8 15 18,6 18,8
(o] y 23,1 18 28 23,1
Ty 2,1 5 21 2,1
nb evalations 387 1247
of F
Table 4
parameter | exactvalues | initial values MIFFLIN POWELL
E 75000 60000 75003 74999
Cy 188 15 18,8 18,8
Gy 23,1 15 23,1 23,1
Oz 12,1 15 12,1 12,1
Tyy 21 5 21 2,1
nb evaluations 162 653
o F
Table S



CONCLUSION AND
FORTHCOMING RESEARCH

We tested these two algorithms with data
coming from different types of overcoring
measurements. We didn’t observe differences
between results when we changed the norm.
Nevertheless the evaluations number of F is less
when condidering the euclidean norm.

We are allowed to work with the principal
stresses and their orientations (expressed in term
of Euler angles) rather than with direction and
shear stresses.

The two methods reveal themselves to be
very complementary and highly performant when
the number of unknowns is less then or equal to
six. Inthe opposite case, the results depend mainly
on the initial values, because of the high number
of solutions [2].

The different uses of the Powell’'s and
Mifflin’s algorithms showed that they fit very
well with classic overcoring analysis methods
such as least squares method. We now try to
ameliorate these methods for future work. At
first, the introduction of constraints on the
unknowns (such as a variation interval) will allow
to better understand the influence of initial values
and to direct the parameters research towards
given directions. The present approach didn’t
give any informations about the precision of the
results. So we are thinking of a probabilistical
approach which will be based on the maximum
likelihood : it means that we will work on the
probability law of the unknow parameters rather
than on their values. Finally, because we want to

determine all the solutions of the equation
F (E, 6) =0, we use a process which combines the
Powell’s and Mifflin’s algorithms with a Monte-
Carlo method in order to see more precisely the

solutions domains.
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APPENDIX A

We describe here the different steps of the
Powell’s algorithm.

Step 0 : Initialisation : choose a starting point
x° and n linearly independant directions d , d

1, 2""
d_, for example the canonic directions.

Step 1 : Determine the series of points x,
x%,...,X" as:

F (x) =min F(x' +A d)=F(x'"! +A, d,).
This could be done by one variable
minimization like a dichotomy or a golden section

method.

Step 2 : Define f = F(x°) , f = F(x") and f, =

F(2x" - x%). Calculate
A=max [ F(x)-F(x_) ].

Determine the m index which gives the
maximum A.

Step 3: Iff, >, or 2(f, - 2f, + £ )(f,- f, - A)
> A(f, - £,) then do not change the directions d,
..,d , set x"=x" and go to step 5.

Step4:If £, <f, and 2(f, - 2f, +£)(f,- f, - A)
< A(f, - £’ then determine the minimum of F in
the direction x® - x°. The obtained point will be
taken as new starting point x° at the nextiteration.
Replace the nindependant directions in this order

d,..,d

1 m1’

d

B_0
EPTe dn,x -x".

Step 5 : If the stopping test is not verify go to
step 1.

APPENDIX B

The Mifflin algorithm require positive real
numbers 0,B,Yy,8 and p with r<1 and (2B:n?y)<p .
Given these parameters , the detailed algorithm is
as follows :

Step 0 : Choose a starting solution point x of
R and a starting step-size s > 0. Set the sequence
index k = 1 and the sequence values x' =x and
$=8.

Step 1 : Compute ann-vector of approximation
first partial derivatives AF by :

AF, = (1/2s) [F(x + se) - F(x - s¢ )] fori=1ton

and an approximate gradientnorm : ||AF||=

[z (AR ]~ |



Set the descent direction indicators ¢, for i=1
ton: o, =+1if AF<0and ¢, =-1if AF>0.

Define abest axis point x by : F(x )=minF(x
+s0¢e).

Step 2 : Compute an (n,n) matrix of
approximate second partial derivatives AF by :

AF, = (Us*) [ F(x + se) + F(x-se) - 2F(x) ]
fori=12,..,n

AF, =(00/s) [Fex + sog;+soe) + F(x) -

F(x + sog) - Fx+ sag) ] for 1<i<j<n

Define a best corner point x_ by : F(x ) =min
F(x +sce + scjej) ,

and a (possible) move pointx by :F(x )=min

[Fx),Fx)].

Step 3:For 1<j<i<n, if IAZFiji>'y,replace
A'F, by ysign(A’F)). Using a modified Cholesky
factorisation procedure ( see [9] Y wich compute
the matrices L,D and E such that LDL! = A?F + E.
Define index q by :

D, -E =min[D,-E,].

Step4: I os> || AF|| andD_-E 20,80
to step7 If as < || AF ||, compute y! sat13fy1ng
LDLy'=-AFand setp=1;andif E#0, sety?

=-[liy' W AF |]AF and p=2and if D_- E_ <
0, compute z satisfying L'z = ¢ and set y° = -
sign(AF)[ |l y I/l z ]z and p = 3 , and define a
search direction vector d by :

d'AF + 12d:AFd=min [ (y)yAF + 1/2(y‘)'(LDL‘
- By ] with 1<i<p.

Otherwise (os>||AF|| and Dqq- Eq<0)
compute z as above and set d = - sign(z’AF)z.

Step 5 : Compute, if possible, a search point
x + td, where t is a positive number satisfying

F(x + td) - F(x) < pt [ dAF + 12tdA®Fd ] .

Then redefine x_by : F(x ) =min [ F(x +td)
JFx ) ].

Step 6 : If F(x_) - F(x) > - (af}s)*, go to step
7.1 F(x_)- F(x)<- Bl AF ]2, choose some reduced
stepsize r in the interval (0,s] and go to step 8.
Otherwise set r = s and go to step 9.

Step7: Setr=s/2andx_=x.

Step 8 : If x # x* replace k by k+1. Set the
sequence values x* =x and s, =s.

Step 9 : Replace x by x and s by r and go to



