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[1] We examine whether seven state-of-the-art European
regional air quality models provide daily ensembles of
predicted ozone maxima that encompass observations.
Using tools borrowed from the evaluation of ensemble
weather forecasting, we analyze statistics of simulated
ensembles of ozone daily maxima over an entire summer
season. Although the model ensemble overestimates ozone,
the distribution of simulated concentrations is representative
of the uncertainty. The spread of simulations is due to
random fluctuations resulting from differences in model
formulations and input data, but also to the spread between
individual model systematic biases. The ensemble average
skill increases as the spread decreases. The skill of the
ensemble in giving probabilistic predictions of threshold
exceedances is also demonstrated. These results allow for
optimism about the ability of this ensemble to simulate the
uncertainty of the impact of emission control scenarios.
Citation: Vautard, R., et al. (2006), Is regional air quality

model diversity representative of uncertainty for ozone

simulation?, Geophys. Res. Lett., 33, L24818, doi:10.1029/

2006GL027610.

1. Introduction

[2] Predicting air quality for the next day, or in an analysis
for the future assuming anthropogenic emission reduction
scenarios, is a straightforward application of regional and
urban air quality modelling. However predicting the uncer-
tainty of such model simulations or forecasts remains a
challenging problem. The question of uncertainty in model
predictions has been extensively addressed in weather fore-
casting in the last decade. Weather forecasts uncertainty
strongly depends on the knowledge of the initial conditions,
as initially close atmospheric states rapidly diverge. Thus
uncertainty prediction has been primarily based on ensem-
bles of forecasts differing by their initial conditions [Molteni

et al., 1996; Toth and Kalnay, 1997]. Atger [1999] showed
that ensembles made with a limited number of different
models also provide an efficient way of describing the
uncertainty in weather forecasts.
[3] In air quality prediction and analysis, uncertainty in

simulated concentrations results either from errors or uncer-
tainty in model input data, physical parameters or parameter-
izations, or from gaps in our knowledge of the chemistry and
physics of the atmosphere and its interaction with the
surface. The distribution of possible concentrations has also
been calculated as in meteorology with ensembles of model
calculations [Dabberdt and Miller, 2000], or from a single
model using Monte-Carlo simulations with assumed distri-
butions of individual processes uncertainty [Hanna et al.,
2001]. These ensembles can also be generated by using a
single model and several optimally selected parameter
values [Beekmann and Derognat, 2003] or numerical and
physical parameterizations [Mallet and Sportisse, 2006].
Ensembles of air quality forecasts can also be created using
several models, developed independently [Delle Monache
and Stull, 2003; McKeen et al., 2005]. Calculations of air
quality and its uncertainty under future European emission
scenarios using model ensembles have also recently been
carried out in a cooperative effort of most regional and city
scale air quality modelling teams in Europe, in the projects
CityDelta [Cuvelier et al., 2007] and EuroDelta [Van Loon
et al., 2006]. It has also been shown that model ensembles
can be used to improve air quality forecasts [Delle Monache
and Stull, 2003; Pagowski et al., 2005] or simulations/
analysis [Van Loon et al., 2006]. However the evaluation of
the ability of ensembles to simulate uncertainty received
interest only very recently [Delle Monache et al., 2006].
[4] In this article we evaluate whether an ensemble of

long-term simulations, performed independently with seven
European state-of-the-art regional air quality models, sim-
ulates spreads of daily ozone maxima that are representa-
tive of the uncertainty of simulated concentrations, i.e., of
their closeness to observed concentrations. Models use the
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equations of physics, but also a number of parameter-
izations, with parameters determined from limited sets of
observations or empirically. The uncertainty on all these
values translates into a global uncertainty on the simulated
concentrations. In the best case with respect to estimation
of uncertainty, modellers have, independently from one
another, selected model options or parameter values with
a range of choices that is representative of the uncertainty
on these parameters. In the worst case, all modellers have
selected the same options or parameter values, or missed the
same key processes. In the former case one expects obser-
vations to lie within the range of simulated concentrations,
while in the latter observations should be ‘‘outliers’’ of the
simulations distribution. Therefore the consistency between
observations and the distribution of ensemble simulated
concentrations measures our ability to represent uncertainty
of simulations. In order to explore these questions we use
the tools developed in the evaluation of uncertainty esti-
mates using ensemble weather forecasting [Talagrand et al.,
1998; Jollife and Stephenson, 2003].
[5] For the sake of conciseness we focus here on ozone

daily maxima simulated at 97 specific air quality monitoring
sites over Europe throughout an entire summer season
(April to September 2001). These simulations are the
control simulations of the EuroDelta experiment [Van Loon
et al., 2006].
[6] In section 2 models and simulations are described. In

section 3 we examine the global properties of the ensemble
distributions and their relation to observations. In section 4
the time variability of the uncertainty is discussed. Section 5
contains conclusions.

2. Models, Observations, and the EuroDelta
Experiment

[7] The EuroDelta experiment [Van Loon et al., 2006] is
designed to evaluate the impact of regional-scale emission
changes for 2020 on air quality. Seven state-of-the-art
chemistry-transport models are used to calculate the differ-
ences between predicted concentrations under several emis-
sion change scenarios for 2020 and concentrations issued
from control simulations using emissions for a reference
year, 2000. In this article we only use the results of the
control simulations, and we focus on ozone daily maxima
over the summer period (April to September), using the
meteorology of Summer 2001, instead of 2000, because its
more anticyclonic weather led to more photochemical
episodes. Daily maxima ensembles therefore consist of
seven ozone concentrations per day and station, the total
number of simulated days being 183. Ozone daily maxima
typically range between 30 and 120 ppb. We use observa-
tions gathered at 97 European Monitoring and Evaluation
Program (EMEP) sites which lie in the intersection of all
model domains, and whose altitude is less than 1000 m. The
total number of available observations and ensembles of
seven concentrations is 17069.
[8] Participating regional-scale models are EMEP (avail-

able at http://www.emep.int), MATCH [Andersson et al.,
2006, and references therein], LOTOS-EUROS [Schaap et
al., 2006], CHIMERE [Schmidt et al., 2001], RCG [Stern et
al., 2003], DEHM [Christensen, 1997; Frohn et al., 2002],
with horizontal resolutions of about 30–50 km, and the

global TM5 model [Krol et al., 2005], zoomed to a 1 � 1
degree over Europe. Vertical resolution varies from four to
25 layers. Although the meteorological year used for the
simulations was 2001, all models use the EMEP annual
emissions totals for Year 2000 [Vestreng, 2003], as the
modelling project was intended to study emission changes
between 2000 and 2010. All other driving parameters differ:
meteorology, boundary conditions, land use, etc. For more
details on the model configurations and the EuroDelta
experiment the reader is referred to Van Loon et al. [2006].

3. Ensemble Distribution of Ozone Daily Maxima
and Uncertainty

[9] Using several models the hope is that, for each station
and day, the seven-member ensemble of ozone daily maxima
represents of the uncertainty in the prediction. Roughly
speaking, the observation can be any of the ensemble
members. In this case, the distribution of the observation
rank within the seven-member ensemble of values, cumu-
lated over many cases must be equiprobable. One useful
tool to check this property is the rank histogram, often
called in meteorology the ‘‘Talagrand diagram’’ [Talagrand
et al., 1998]. Using seven models, the rank of the observed
daily maxima among the simulated ones takes an integer
value between zero (for the interval below the lowest value)
and seven (for the interval above the highest of the seven
simulated values). The rank histogram counts the occurren-
ces of the rank for each integer between zero and seven. If
the distribution of the observation within the ensemble is
equiprobable, on average, the rank histogram must bear
constant values. Note that the ensembles can give very poor
predictions of the actual values (large spreads) but still
satisfy the rank histogram condition. The aim here is not to
evaluate the skill of the ensemble itself, but the coincidence
between ensemble spread and uncertainty.
[10] Figure 1a shows the rank histogram of the summer-

time (April to September) daily ozone maxima, all stations
and days being put together. The first two bins (0 and 1)
have a number of counts much larger than the other bins,
reflecting a difficulty of models to simulate low daily
maxima, which is a bias of the ensemble. This bias could
result from the larger modelling effort put for skilful
prediction of high concentrations rather than of lower ones.
This ‘‘ensemble bias’’ can be removed, at each station, by
subtracting the average difference between simulated (all
models together) and observed ozone daily maxima. After
this operation, daily maxima ensembles are only shifted but
their distribution, spread and model rank are unchanged. In
this case, the rank histogram becomes flatter (Figure 1a).
Therefore the bias-free ensemble gives a fair average
account of the uncertainty. However the bumps in the
histogram reveal heterogeneities in the distribution of
ensemble ozone values relative to the distribution of
observations.
[11] When calculated station by station, rank histograms

exhibit variable shapes. Most of them display rather equi-
probable distribution. However in many cases they exhibit
either a ‘‘U’’ shape or a bump shape. The former case results
from an underestimation of the ensemble spread relative to
the observations. In the latter case the uncertainty is
overrepresented by the ensemble.
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[12] When removing the bias of each model at each
monitoring site, daily maxima ensemble spread are
changed, as the spread of model biases is removed. In this
case the rank histogram displays a clear U-shaped curve
(Figure 1a), indicating an underestimation of ensemble
spread. Relative to the previous case where only the
ensemble bias is removed, the spread of ensembles is
reduced to its ‘‘random’’ component, as it does not contain
the contribution of the spread due to individual model
biases.
[13] Therefore from Figure 1a it is clear that part of the fair

representation of uncertainty with ensemble bias removed is
due to the spread of model biases. These individual biases
lead some models to be often found at one extreme rank of
the ensemble, as shown by the histogram of models rank in

the biased ensembles in Figure 1b. For instance model 2 is
often found at a high rank, while model 7 is very often
found at the first rank.

4. Space and Time Variability of the Uncertainty

[14] The uncertainty in simulated ozone concentration
can be quite small on a windy and cloudy day or much
larger in stagnant anticyclonic conditions as it becomes
sensitive to many parameters, such as wind direction and
emissions. The question we address here is whether the
model ensemble is able to reproduce the space and time
variability of uncertainty. Figure 2 shows a ‘‘spread-skill
diagram,’’ where the skill, characterized by the root mean
square RMS error of the ensemble average concentration, is
plotted against the ensemble spread, defined as the standard
deviation of the ensemble. In order to avoid statistical noise
the results are averaged over equally populated spread bins
of 40 cases. If the variability of uncertainty was perfectly
simulated by the ensembles, the points should lie along the
diagonal in Figure 2. By contrast if the variability of the
ensemble spread is not correlated with that of uncertainty,
curves should be horizontal lines. Figure 2 shows that the
situation is ‘‘in between.’’ For all types of ensembles (biased
or unbiased), skill decreases with increasing spread. How-
ever for largest spread ensembles, RMS error is smaller than
ensemble spread meaning that when models strongly dis-
agree the uncertainty is overestimated. The reverse is true:
when spread is small, RMS error is larger than spread. Thus

Figure 1. (a) Histograms of the rank of observed
summertime ozone daily maxima among the seven
simulated values, all stations and days, from April to
September 2001 being put together. The black bars show
the rank histogram from the raw ensemble. Gray bars stand
for the histogram of unbiased estimates, the ensemble bias
being removed. Empty bars show histograms for simulated
values where bias has been removed separately for each
model and each station. (b) Histograms of the rank of each
model within the ensemble, for the simulation of ozone
daily maxima, for the raw ensemble.

Figure 2. Root mean square error of the ensemble average
daily maxima versus the ‘‘spread’’ of the ensemble taken as
the standard deviation of the seven simulated values. Values
have been averaged in bins of 40 consecutive values of the
spread. The three curves stand respectively for the raw
ensembles, the unbiased ensemble, and the ensemble with
unbiased individual models.
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a part of the variability of the spread is not due to actual
uncertainty, but to model differences uncorrelated with their
skill. The best fit to the diagonal is found with the model-
bias free ensembles.
[15] Another way to explore the variability of uncertainty

is through probabilistic prediction of concentration exceed-
ances. Given the seven daily maxima values a probabilistic
prediction of the exceedance of a given threshold can be
made by counting the number of ensemble members that
exceed the threshold and dividing this number by seven to
obtain a probability p. In perfect ensembles, the frequency
of the actual occurrence of the exceedance, given the
predicted probability p, should be equal to p. This property
can be verified using reliability diagrams [Talagrand et al.,
1998] which displays the frequency of occurrence as a
function of predicted probability. These diagrams are shown
in Figure 3 for the biased andmodel-unbiased ensembles, and
for 3 thresholds: 60 ppb, 75 ppb, and 90 ppb. For a 90 ppb
threshold, there were no cases where more than 2 models
simultaneously predicted the event. For a 60 ppb threshold
the reliability of the probabilistic prediction is high, thus
the representation of the uncertainty in threshold exceed-
ance is accurate. When threshold increases, the occurrence
frequency is larger than the predicted probability, indicating
an underestimation of high ozone values by all models. This
effect is more pronounced when model biases are removed
(not shown). The removal of general positive biases
increases the underestimation of high ozone concentrations.

5. Conclusions

[16] We have examined the spread of long-term simula-
tions of daily ozone maxima performed by an ensemble of
seven state-of-the-art regional air quality models. The main
issue of this article was to assess whether this spread is

representative of the uncertainty of ozone prediction. We
used throughout this study statistical tools developed for the
evaluation of ensemble weather forecasts. The analysis of
rank histograms showed that (1) there is a global positive
bias of the ensemble, (2) when ensemble bias is removed at
each monitoring station the spread of simulated values is
fairly representative of the uncertainty, that is, of the spread
of the simulation errors, and (3) this spread is partly due to
the spread of individual model systematic biases.
[17] The variability of the uncertainty from day to day or

from station to station is reproduced by the simulated
ensembles, as the simulation skill decreases as ensemble
spread increases. The ability of the ensemble in predicting
uncertainty and its variability is also shown by an evaluation
of the reliability of probabilistic prediction of threshold
exceedances.
[18] There are several limitations to this study. First, all

models use the same emissions yearly total, the EMEP
emissions. The ensembles are therefore missing part of the
spread, the amplitude and relative importance of which
remaining undetermined. If it is significant, the spread of
the ensembles should increase, while uncertainty may not,
depending on the quality of EMEP emissions. If emissions
closer to actual ones were used in the ensemble uncertainty
should decrease. Finally the distribution and relatively small
number of sites used for estimating ensemble representa-
tiveness may not allow us to extrapolate (or interpolate) our
conclusions to the whole of Europe. In particular results do
not apply to areas with complex terrain or emission patterns
(coasts, cities, industrial areas).
[19] The evaluation of European emission reduction

strategies is now carried out using ensembles of models,
as in the CityDelta [Cuvelier et al., 2007] and EuroDelta
[Van Loon et al., 2006] projects. What we learn from our
findings is that apart from general biases problems the
diversity of models used in these evaluations gives a fair
account of the uncertainty in the simulated ozone daily
maxima. It is hoped that this representativeness extends to
other air quality parameters and pollutants, a question that
will be addressed in future work. It is also hoped that it
extends to results of emission reduction scenarios, in which
case the ensemble provides an efficient way to evaluate
uncertainty in our simulations of future air quality.
[20] The good correspondence between ensemble spread

and uncertainty also indicates that, for ozone daily maxima,
regional air quality models developed in Europe are com-
plementary and their (unintentional) diversity reflect the
uncertainty in our knowledge of air quality processes.
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