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ABSTRACT

This work presents a new approach to predict thlerstability of nitroaromatic
compounds based on quantum chemical calculationsoan@Quantitative Structure-
Property Relationship (QSPR) methods. The datacsesists of 22 nitroaromatic
compounds of known decomposition enthalpy (takea ascroscopic property related
to explosibility) obtained from differential scangi calorimetry. Geometric, electronic
and energetic descriptors have been selected anguted using Density Functional
Theory (DFT) calculation to describe the 22 molesulFirst approach consisted in
looking at their linear correlations with the expeental decomposition enthalpy.
Molecular weight, electrophilicity index, electraiffinity and oxygen balance appeared
as the most correlated descriptors (respectively ®76, 0.75, 0.71 and 0.64). Then
multilinear regression was computed with these m@secs. The obtained model is a
six-parameter equation containing descriptors afluéd from quantum chemical
calculations. The prediction is satisfactory witbarelation coefficient Rof 0.91 and

a predictivity coefficient R of 0.84 using a cross validation method.
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1. Introduction

An important initial step for the management ofusttial risks consists in identifying
and determining as soon and as accurately as possiplosive abilities of molecules,
whatever their final use. Moreover, the explosiveimsic property of a substance ranks
at top of physicochemical hazards that may be fefian the use of a given chemical
[1]. This is a reason why, in addition to the coexly with which this hazardous
property is triggered in real case, the experimegproach has remained the “golden”
way to assess hazards. Keeping on this unique appraould however be a real
burden for the industry with the requirements of thew regulatory framework
REACH' and its tool the GHSgiven the tremendous number of substances (up to
30000) that might require a new assessment of Haaarproperties. Another interest
for predictive methods is to address needs of aarggrocesses of substances that are
applied to search for a targeted chemical actiigtg. phytotoxicity, medical efficiency
for a given iliness, reactivity...) at the R&D level.

A number of early works are worth being mentionethee field of hazard prediction. At
first, some methods of prediction based on thermadyc concepts have been
developed. Significant weaknesses in those metl®ds the chemical thermodynamic
and energy release evaluation (CHETAH) [2] and ¢h&ulated adiabatic reaction
temperature (CART) [3]. Grewer [4,5] proposed apottvay to predict the thermal
stability by considering the influence of the cheahistructure on the decomposition of

nitro compounds. Keshavarz's works have also to noted as the elemental

! REACH for “Registration, Evaluation and Authoriat of Chemicals” is a new European regulation

published by the European Commission in Decemb86 2id entered into force on 1st June 2007. All
manufacturers, importers and suppliers of chemicalst identify and manage risks linked to the

substances they manufacture and market. http:/fattga.eu/

2 GHS for “Globally Harmonized System of classificatand labeling of chemicals” is a United Nations

system which aims to identify hazardous chemicald # inform users about these hazards through



composition of substances is used to predict varfgoperties of energetic materials
such as the impact sensitivity [6]. Saraf et a].ditlined the pertinence (in terms of
way of investigation) of screening tools based e identification of relationships
between chemical structure and thermal stabilitynitroaromatic compounds and we
have made up our mind to explore this route.

An alternative tool for the prediction of chemidszards is the Quantitative Structure
Activity/Properties Relationship (QSAR/QSPR) methodowadays, they are generally
limited to the scope of toxic property screening.(ithe nitrobenzene molecule [8]).
Indeed, the first applications of these methodetas statistical analyses have mainly
concerned biology [9,10], toxicology [11,12] or drdesign [13-15]. However, their
interest has been growing up in recent years foergbhysico-chemical activities [16-
18]. In such methodology, computational chemistgyrhelp to describe the molecular
electronic structure and the decomposition rea@tajuantum chemical level.

In this paper, we decided to explore the abilibésnolecular modeling to predict the
explosibility of nitroaromatic compounds (known petentially explosive chemical
substances and presenting complex decompositiomnela [19]). A series of
geometric, electronic and energetic descriptorewemputed using quantum chemical
calculations. Correlations between these data aadramcopic properties related to
explosibility were determined. In particular, exglality is related to detonation and
deflagration performances and to sensitivity to naeical (impact, shock or friction)
and thermal stresses or to electric dischargese, ke focused on the thermal stability
property and more precisely on the experimentabehgposition enthalpy (or heat of
decomposition). Experimental characterization isll waefined, particularly by

calorimetric measurements [20] but, until now, oriéw approaches concern the

standard symbols and phrases on the packagingslafmd through safety data sheets (SDS).
http://ecb.jrc.ec.europa.eu/classification-labgllin



prediction of the thermal stability properties hem QSPR models [21-23]. In most of
the cases, they are dedicated to specific (andlsmlalsses of compounds (e.g.
chromophores [24] or ionic liquids [25]). In theafnework of chemical hazards
management, Saraf and coworkers [7] proposed, tdkiowledge, the only existing

model concerning the heat of decomposition withamarage absolute error of about

6%:
— AH (kcal/ mol) =75% ny, (1)

wherenyoz is the number of nitro groups in the molecule.
Our work presents the first significantly correthtsmodel for the prediction of this
experimental property using an original approach lmamg QSPR methodology with

guantum chemical calculations.

2. QSPR methodology

The quantitative structure-property relationship tmodology (QSPR) consists in
correlating quantitatively an experimental propexith the molecular structures of the
considered compounds. Thus, the relationship haotlesving general form between

macroscopic and microscopic properties:

Property = f (Descriptors) (2)

An experimental data set provides the propertyesalohen different descriptors can be
calculated to characterize the molecular structéitlde compounds of the data set. The
method can be based on neural networks [26], gerédgiorithms [27] or statistical

analyses such as multilinear regressions. We dheslast approach in this study.



The model obtained with such a regression hasaltening form:

Y=A+AX +AX, .+ AX, 3

where Y is the property to predictX; are the molecular descriptors awg the
corresponding regression constants. The relialolitthis model is estimated with the
coefficient R3 which characterize the fitting of the calculatgdlues with the
experimental ones. To ensure the validation ofrtizglels, the use of external data is
recommended. Nevertheless, in this study, the seavaflable experimental data
contained only 22 molecules making its divisionoirttaining and validation sets
impossible. For this reason, the coefficié®,, using a cross-validated method, has
been considered to characterize the predictivityhhefmodel.

The cross-validation technique [28] is based omavé-one-out procedure. For each
molecule in the data set, a new multilinear regoess recalculated without changing
the descriptors for all compounds in the data seicept this one. Then, the
corresponding property value is predicted from tmisdel equation. Finally, R?is
calculated by correlating the obtained values fmhecompound with the experimental
ones.

Once a reliable equation is validated, this modael loe used to predict the property, for
other similar compounds to the selected ones, rbtmeasured and maybe not yet

produced. The results can also help to understachechanisms leading to the studied

property.



3. Data set selection

The choice of the training set of experimental data critical point in a QSPR analysis.
Experimental conditions may have a strong influerce the studied properties.
Therefore, all experimental values used in thénftiprocedure have to be obtained in
the same conditions. Differential Scanning Calotime(DSC) is often used to
characterize the thermal stability of explosive poemds [29]. The experimental
property studied in this work is the decompositerthalpy taken from literature [30].
Our data set is composed of 22 nitroaromatic comgsu known as potentially
explosive chemicals [31]. The 22 molecules andrtlerresponding experimental

decomposition enthalpy values are presented in &ifjuand Table 1.

4. Descriptors

Different types of descriptors (geometric, elecicosnd energetic) have been selected
to describe the 22 molecules. In Table 2 are ptedethe 14 descriptors calculated
among the large number and diversity of those #gtused in QSPR methodology

[32].

4.1. Local descriptors

In nitro compounds, the carbon-nitrogen bond disdmn is currently considered as a
rate-determining step of decomposition [33]. Fos tteason, we decided to describe
this carbon- nitrogen bond and its attached nitoug using geometric, electronic and
energetic descriptors.

First, the length of the carbon-nitrogen baig, and the charge on the M@unctional

group were calculated.



Secondly, the mid-point potentisl,g, also used as a descriptor [34,35] in the field of
energetic materials, was evaluated. This descripgoran approximation of the

electrostatic potential at the midpoint of the cermitrogen bond [36].

Q. +Qy
V., =—— 4
mid 0-5dCN ( )

whereQc andQy are respectively the atomic charges on carbomarmhyen atoms.

The C-NQ dissociation bond energ¥ds) has already been correlated to the impact
sensitivity [37,38] and considered for the estim@atof decomposition temperatures
[39]. To calculate this energy, an homolytic disatbon of the R-NQ@ molecule is

considered:
R-NO, - R + NG, (5)

Finally, the corresponding dissociation enerByss is calculated as the energy

difference between products and reactants:

Euss= E(R)+ E(NO;) ~E(RNG,) (6)
It is worth being noted that, for polynitroaromatiompounds, these descriptors were
extracted for the weakest carbon-nitrogen bondhi molecules considering their

dissociation energy.

4.2. Global descriptors



If the previous local descriptors as above defiaeel specific for nitro compounds,
global descriptors present the advantage to be swotable for extended data sets with
compounds without any nitro group. Among such dpsms, the molecular weigil,,
was considered. It has also been used in the a#ilwnlof the oxygen balance as defined

by Shanley et al. [40].

OB = - 160(12>'\(/|+Y/2— z)]

w

(7)

X, Y andZ are respectively the number of carbon, hydrogeh atygen atoms in the

molecule. This is a traditional empirical descriptsed in hazard prediction related to
energetic materials [41].

The atomization energy is the energy needed tckhkakdoonds in the molecule. It can

be calculated from the following equation:

natom

Eatomizatiun = z Ei (atomi) - E(m0|eCU|9 (8)

The electronic structure can be described by tpeleimoment (DM) and the mean
polarizability ). Dipole moment and polarizability characterize finfluence of an
external field on the electronic density. The dgowioment is a scalar entity whereas the
polarizability is a tensor. The mean polarizabiigycalculated from the polarizability

matrix:

a= }é(axx +a, + azz) 9)



whereg;; are the diagonal components of the polarizahbiliirix.

4.3. Conceptual density functional theory descriptes

Global electronic descriptors can also be estim&t@mu conceptual density functional
theory [42,43]. This methodology allows to redefinkssical chemical reactivity
concepts, e.g. electronegativity, in the framewafrthe density functional theory [44].
The ionisation potential (IP) and the electron raf§i (EA) are calculated from the
energies of the highest occupied and the lowestauped molecular orbitalomo and

éLumo, according to the Koopmans theorem [45].

IP =-&.0m0 (10)

EA= ~€Lumo (11)

The electronegativityy] characterizing the electron donating propertytha system

was identified to be the negative of the chemicaéptial () [46] and therefore:

— (IP+EA — _(gHOMO *+ ELumo)
2 2

=-u (12)

The hardnessj [47] has been defined similarly to express trsestance of the system

to the change in the number of electrons.

N =1P-EA= & yo ~ Enomo (13)

10



These quantities (eq. 12 and 13) are already usetescriptors for different physico-
chemical properties such as heats of formatiorodingy points [48].

More recently, Parr et al. [49] constructed thectetghilicity index () to measure the
loss in energy for a maximal electron flow from dorto acceptor. This index is

proportional to the square of the chemical potédiiaded by the hardness.

w= #~ 14

This descriptor has already been applied to thdigtien of biological activity [50].

5. Computational details

The molecular structures of 22 nitroaromatic conmatsuhave been calculated. For each
one, the structures of their phenyl radicals wése aomputed to access to the carbon-
nitrogen bond dissociation energy, the N@dical being of course also calculated. All
calculations presented in this work were performsithg the Gaussian03 package [51],
employing the density functional theory (DFT) withe parameter-free PBHB2]
hybrid functional. Geometry optimizations of staljgecies were performed with a 6-
31+G(d,p) basis set to describe correctly the géwenestructure. Vibrational
frequencies were obtained at the same level ofrgh€he nature of the stationary
points was checked by showing no imaginary frequdoc our stable structures. The
electronic structure of these molecules has beemstigated using the natural
population analysis (NPA»3].

The Codessa software [54] has been used to obtanelation coefficients and the

QSPR model (using the integrated Best Multi Lin€agression analysis) for the

11



prediction of the experimental decomposition emgidfom the computed descriptors.
The significance of each descriptor in the equatioas validated by performing a

Student t-test validation at a 95% confidence level

6. Results and Discussion

6.1. Linear correlations

The molecular descriptors, presented above, hage balculated for each molecule of
the data set. These data, reported in Table 3, aeaé/zed to obtain a relationship
between the molecular descriptors and the expetaherplosibility.

Simple linear fittings were computed between eaebcdptor and the experimental
enthalpy change. Correlations were appreciated ftecoefficient R2 (in Table 3) as
shown for the descriptors that provide the best lamgst correlations (see Figure 2),
with R2 of 0.76 for molecular weight and less than 0.0t rieean polarizability
respectively.

The local descriptors related to the C-Nbnd (presented in paragraph 4.1) do not
exhibit any significant correlation with the decamsfiion enthalpy (R2<0.5). Therefore,
a simple and direct breaking of the carbon-nitrogend appears to be not sufficient for
the description of the decomposition enthalpy. Mooeplex processes might occur
[19] and in particular other decomposition pathsldexist as experimentally observed
[55] and evidenced computationally [56]. Furtherejomajor decomposition paths
involving interactions between the nitro group aodho-substituents have been
calculated [57,58].

More substantial correlations are exhibited for thelecular weight (R?=0.76), the

electrophilicity index (0.75), the electron affiif0.71) and the oxygen balance (0.64).

12



It can be noted that these descriptors are auteleted. Indeed, the molecular weight
and the electron affinity are used in the calcatatof the oxygen balance and the
electrophilicity index respectively.

Even if significant correlations appear, a singésatiptor approach is not sufficient for
the prediction of the experimental property. Fostamce, considering the molecular
weight or oxygen balance, the values of these geecs do not vary with the position
of the substituent. Indeed, ortho, meta and pateotoiluenes present the same
molecular weight (137 g/mol) whereas their decontssenthalpies are different, i.e.
329, 284 and 318 kJ/mol, respectively. The usé tdast one more descriptor is needed
to characterize the influence of the substituemsitpm in this case. Therefore, in a next

step, multivariable regressions are investigated.

6.2. Multilinear model

All the descriptors previously studied have beelegrated in a multivariable analysis
using a multilinear regression. The best QSPR misdedtimated as the most predictive
in term of R&,.

The obtained model is a six-parameter equation oserh with the hardness, the
electrophilicity index, the mean polarizability, ethonization potential, the dipole

moment and the dissociation energy.

+9732

— AH =33854; + 40050 —10303a - 33785P + 251DM - 140 E,, as)

Re= 091 R, =084

First we note that the six descriptors selectedhiyy multilinear fitting procedure are
different from the four global descriptors presegtthe best linear correlations with the

experimental decomposition enthalpy (see paragfph The only exception is the

13



electrophilicity index. The other parameters (Ey.4f less linearly correlated with the
experimental property.

Obviously, 22 molecules are not sufficient to obta robust predictive model.
However, these results (with a R2 of 0.91) are psorg. For instance, when applied to
the evaluation of the decomposition enthalpy of@etule not included in the training
set, as 2,4,6-trinitrotoluene (TNT), the predictedue is 920 kJ/mol which is close to
its experimental value (998 kJ/mol [20]). Work iisgrogress in this direction, but here
we stress, once again the difficulty to obtain hgermmus experimental data. Moreover,
the model gives interesting indications for theufat exploration of larger data sets.
Indeed, the presence of descriptors arising from g$b-called conceptual density
functional theory (i.en, o, IP) has to be noticed, all being related to th@ecular
reactivity. Hence, the characterization of the C-NMOnd, through Essin Eq 15, and
the molecular reactivity properties are importam@irgmeters for the prediction of
decomposition properties like thermal stability.

Furthermore, contrary to classical constitutionasatiptors (for instance, the oxygen
balance OB), the selected descriptors in the madelable to distinguish between
isomers. Hence, a model based only on the numbeitraf groups (like Eq. 1) is not
sufficient to completely characterize thermal dibiof nitroaromatic compounds.
Nevertheless this parameter is obviously fundanhelmaeed, the presence of chemical
groups indicating explosive properties (e.g. nitno)chemicals is a pre-evaluation
element in chemical safety regulations for substanwhich may have explosive
properties [59]. Besides, mono-, di- and tri-niteraatic compounds can be clearly
distinguished on figure 3, which represents thecuated values versus the

experimental ones. So our model is consistent thithempirical consideration.

14



7. Conclusion

Nitroaromatic compounds have been modeled usinglémsity functional theory. The
aim was to observe correlation between the molestteccture of such compounds and
an experimental property of explosibility, the degmosition enthalpy. The electronic
and geometric structures were characterized with nigdlecular descriptors. The
molecular weight, the oxygen balance, the electéimity and the electrophilicity
index are the descriptors the most correlated thighexperimental values of a data set
containing 22 nitroaromatic molecules whereas #mrdption of the direct breaking of
the carbon nitrogen bond does not seem to be muffito describe the energy released
during the thermal decomposition of these nitroatiencompounds. A multivariable
model has been established. It consists in a gnpeter equation with promising
correlation (R2=0.91) and predictivity (i220.84) coefficients. These first results on the
use of descriptors calculated from quantum chemiedtulation to develop QSPR
models to predict decomposition enthalpy are vencoaraging. In particular,
parameters characterizing the C-N@®ond and the molecular reactivity have
demonstrated their pertinence in such a study. ikgepn mind that our data set
contains only 22 molecules, a robust model for frediction of decomposition
enthalpy of nitroaromatic compounds can be expeasedg an extended data set and
associating the selected descriptors of this stuaidly other classes of descriptors, e.g.

constitutional and topological descriptors.
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List of figure legends:

Fig. 1. Sketchs of the considered nitroaromatic moleciigz=e table 1 for the

exact nomenclature).

NO,

A
(]

R=N02, CH3, NH2, COOH, OH, Cl

22



Fig. 2. Plot of (a) molecular weight and (b) mean palaoility with the
experimental decomposition enthalpy.

(@)

1200
1000
800

600

-AH (kJ/mol)

400

200

12|0 | 14|10 | 1é0 | 12|30 | 2(|)0 | ZéO | 24|fO
Mw (g/mol)
(b)
1200
1000+ R2 < 0.01

800 -

600 - . "

-AH (kJ/mol)

400

200 . - T




Fig. 3. Calculated vs experimental decomposition entbal(kJ/mol).
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Table 1: Experimental decomposition enthalpiési(x,/kJ/mo) of the 22 substituted

nitrobenzene molecules from [30].

-AHexp
1 nitrobenzene 339
2 1,2-dinitrobenzene 518
3 1,3-dinitrobenzene 586
4 1,4-dinitrobenzene 622
5 2-nitrotoluene 329
6 3-nitrotoluene 284
7 4-nitrotoluene 318
8 2,6-dinitrotoluene 576
9 3,4-dinitrotoluene 666
10 2,4-dinitrotoluene 596
11 2-nitroaniline 307
12 3-nitroaniline 314
13 4-nitroaniline 279
14 2-nitrobenzoic acid 297
15 3-nitrobenzoic acid 298
16 4-nitrobenzoic acid 304
17 2-nitrophenol 345
18 3-nitrophenol 316
19 4-nitrophenol 300
20 1-chloro-4-nitrobenzene 360
21 2,4-dinitrophenol 662
22 2,4,6-trinitrophenol 1173
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Table 2: Descriptors.

Eatom

carbon nitrogen distance i
charge on the nitro group
mid-point potential inA™
carbon nitrogen dissociation energy in a.u.
molecular weight in g/mol
oxygen balance in percents
atomization energy in a.u.
dipole moment in D

mean polarizability i ?
ionization potential in a.u.
electron affinity in a.u.
electronegativity in a.u.
hardness in a.u.

electrophilicity index in a.u.
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Table 3: Descriptors calculated for 22 nitro compasiunder study. See table 1 for acronyms anddifjdor molecules nomenclature.

den? Onvo®  Vmid®  Edgid® M., OB Euor*® DM? o |pa®  Epa) £ °® 0
1 1.467 -0.26 1.64 71.2 123 -163 1497.3 4.832 0.40 299. 0.097 0.198 0.202 0.097
2 1.467 -0.20 1.74 60.4 168 -95 1666.5 7.000 045 14€.3 0.117 0.216 0.197  0.118
3 1.470 -0.23 1.65 68.5 168 -95 1676.5 4.458 0.39 29.3 0.122 0.226 0.207  0.123
4 1.472 -0.23 1.71 68.2 168 -95 1676.4  0.000 042 20.3 0.136 0.231 0.191  0.140
5 1.446 -0.26 1.65 68.7 137 -181 1778.5 4.542 0.39 28@. 0.091 0.188 0.195 0.091
6 1.467 -0.26 1.66 71.4 137 -181 1778.0 5.196 0.40 28%. 0.094 0.190 0.191 0.094
7 1.462 -0.26 1.61 72.4 137 -181 1778.5 5.567 0.38 28®. 0.092 0.190 0.197 0.092
8 1.468 -0.23 1.68 63.8 182 -114  1950.6 3.071 0.41 3110. 0.110 0.211 0.201 0.111
9 1.468 -0.20 1.78 60.5 182 -114  1948.1 7.722 0.46 304. 0.112 0.208 0.192 0.113
10 1.469 -0.24 1.68 65.9 182 -114 19555 5.177 0.39 310. 0.115 0.216 0.201 0.116
11  1.441 -0.33 1.45 75.6 138 -151 1663.2 5.026 0.30 243. 0.087 0.165 0.155  0.088
12 1.468 -0.26 1.71 71.6 138 -151 1660.1  5.904 0.42 244. 0.090 0.167 0.154  0.091
13 1.448 -0.30 1.49 75.7 138 -151 1662.6 7.472 0.34 248. 0.080 0.164 0.169 0.080
14  1.466 -0.22 1.77 62.7 167 -120 1862.3 4.259 0.47 300. 0.101 0.201 0.201 0.101
15 1.468 -0.24 1.63 70.1 167 -120 1870.3 2.815 0.39 31D. 0.106 0.209 0.206  0.106
16 1.470 -0.24 1.57 69.5 167 -120 1869.9 3.762 0.36 31®M. 0.115 0.212 0.195 0.116
17 1.460 -0.25 1.49 67.4 139 -132 1589.4 6.091 0.34 2710. 0.086 0.179 0.185 0.086
18 1.469 -0.25 1.70 70.5 139 -132 15949 6.066 0.42 27®M. 0.096 0.183 0.174  0.096
19 1.455 -0.28 1.54 73.8 139 -132 1596.8 5.504 0.36 279. 0.090 0.182 0.185  0.090
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20 1.464 -0.25 1.62 71.1 157 -122 1480.4  3.299 0.39 29%. 0.104 0.200 0.191 0.104
21 1.463 -0.22 1.53 64.6 184 -78 1769.9 6.289 0.34 0.3 0.110 0.206 0.192 0.111
22 1.466 -0.19 1.56 62.3 229 -45 1951.0 1.757 0.35 23.3 0.149 0.236 0.174  0.160
R2¢  0.10 0.46 0.01 0.42 0.76 0.64 0.21 0.10 0.00 035 .71 0 0.52 0.00 0.75

Distances ird, dipole moments in D, oxygen balance in %, mo#aukight in g/mol, polarizability inl®, Energies” in kcal/mol or”in u.a.

%at PBE0/6-31+G(d,p) level

bat PBE0/6-31+G(d,p) level from NPA

‘correlation coefficient for the linear regressioitiwthe experimental decomposition enthalpies bigd
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