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ABSTRACT 1 

In case of low dose exposure to a substance, its concentration in cells is likely to be stochastic. 2 

Assessing the consequences of this stochasticity in toxicological risk assessment requires the 3 

coupling of macroscopic dynamics models describing whole body kinetics with microscopic 4 

tools designed to simulate stochasticity. In this paper, we propose an approach to approximate 5 

stochastic cell concentration of butadiene in the cells of diverse organs. We adapted the 6 

dynamics equations of a physiologically-based pharmacokinetic (PBPK) model and used a 7 

stochastic simulator for the system of equations we derived. We then coupled kinetics 8 

simulations with a deterministic hockey stick model of carcinogenicity. Stochasticity induced 9 

substantial modifications relative to dose-response curve, compared to the deterministic 10 

situation. In particular, there was non-linearity in the response and stochastic apparent 11 

threshold was lower than the deterministic one. The approach we developed could easily be 12 

extended to other biological studies to assess the influence at macroscopic scale of 13 

stochasticity for compounds dynamics at cell level.  14 

 15 

KEY WORDS: PBPK, butadiene, systems biology, stochasticity, cancer 16 
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1. INTRODUCTION 1 

The dynamics of chemical species at the level of the cell are rather discrete and stochastic 2 

than continuous and deterministic, in so far as they are determined by the action of only a few 3 

molecules (Rao and Arkin, 2003). Stochastic resonance in biology is a well known 4 

phenomenon, able to enhance detection and improve the transmission efficiency of weak 5 

information in nonlinear systems (Hänggi, 2002). In particular, it explains why deterministic 6 

threshold can be exceeded, with a rate in relation to the intensity of the signal, even if the 7 

mean value of this signal throughout time is below the threshold. The concepts apply to 8 

toxicology: For low exposures to a chemical, stochasticity is likely to play a role in the 9 

occurrence of toxic effects at the cell level, even if the mean cellular concentration is below 10 

some deterministic threshold, inferred for instance, through mechanistic considerations 11 

(Lovell, 2000). Studying stochasticity in toxicant cellular concentration is particularly 12 

relevant for carcinogenesis which might be induced at very low doses of exposure.  In this 13 

paper, we present a modelling framework to simulate stochastic concentrations at cell level 14 

and to derive consequences for cancer risk assessment. Simulations are performed based on 15 

actual exposure levels and a physiologically-based toxicokinetic model for butadiene. 16 

1,3-Butadiene is a highly volatile four-carbon chemical mostly made from the processing of 17 

petroleum. It can be detected in urban air pollution, cigarette smoke and gasoline vapors. 18 

Butadiene is an established carcinogen, as a DNA-reactive chemical leading to production of 19 

DNA adducts in rodents in liver, lung and tissue (Preston, 2007). It is hypothesized that 20 

butadiene carcinogenicity is a consequence of the genotoxicity of its metabolites (Albertini et 21 

al., 2003). It is not clear whether or not there is a threshold for effects in humans (Preston 22 

2007). 23 

 24 
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 1 

Physiologically based toxicokinetic (PBPK) models propose a realistic even if simplified 2 

description of the mechanisms of absorption, distribution, metabolism and elimination of 3 

chemicals in the body. In these models, the body is subdivided into various compartments 4 

representing specific organs or homogeneous groups of tissues linked and irrigated by blood 5 

vessels. Compartments are characterized by a set of parameters of physiological relevance 6 

(e.g., volume or blood perfusion rate) which play a crucial role in explaining the behavior of 7 

chemical substances in the body, and represent invariants across substances. A three-8 

compartment physiologically based pharmacokinetics (PBPK) model has been proposed to 9 

describe the distribution of butadiene and the production of its first metabolite following 10 

oxidation, 1,2-epoxy-3-butene (Brochot and Bois, 2005). We use here an extension of this 11 

model with 23 compartments.  The model parameters (organ volumes etc.) correspond to 12 

those of an adult man.  13 

These macroscopic models can describe the distribution of chemicals in the different organs 14 

but are unable to capture the stochasticity at cell level. In contrast, a recent discipline, systems 15 

biology, aims at studying the dynamics of the components of a cell, and tools to study the 16 

influence of stochasticity at cell level have being developed. The main objective of this paper 17 

is to develop a methodology for coupling microscopic and macroscopic dynamics models to 18 

assess the consequences at organ level of stochastic chemical concentration and effects at cell 19 

level. Coupling PBPK models and systems biology is a step forward to develop integrated 20 

approaches able to relate information obtained at cell level, like for instance “omics” data, and 21 

effects on health.  22 

 23 

 24 
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 1 

 2 

2. MATERIALS AND METHODS 3 

2.1. PBPK model for butadiene 4 

Our PBPK model contains 23 compartments (See Figure 1). Compartments are mainly 5 

connected by blood circulation, by air exchange at the lung level, excretion to urine and feces, 6 

and metabolism. Concentrations C, in µg/L, are obtained at any time by dividing the quantity 7 

of butadiene, Q (in µg) by the compartment volume (supposed constant in time). Volumes are 8 

in L, time in min, flows and rates in L/min. Q and C depend on time but we omit the time 9 

argument when possible for simpler notation.  A list of parameters and their values can be 10 

found in Tables I-IV. We assume that butadiene is only eliminated through metabolisation or 11 

exhalation, and that intake only occurs through inhalation. 12 

For adipose tissue, adrenals, bone marrow, brain, breast, heart, kidneys, muscles, other organs 13 

and tissues, pancreas, skin, spleen, testes and thyroid, the differential equation giving the rate 14 

of change for the quantity of BD is: 15 

 
i

i
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C
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t

Q
 (1) 16 

where Fi are blood flows (values given in Table 2), and Pi are tissue over blood partition 17 

coefficients. These partition coefficients were calculated by multiplying the partition 18 

coefficients for fat (Table III) by fat content of each organ  (Table IV). Indeed, for highly 19 

lipohilic organic chemicals, Pi values can be approximated by the ratio of lipids in adipose 20 

tissues and blood (Haddad et al., 2000).  21 

 22 
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For upper respiratory tract:  1 
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where Fpul designates the pulmonary ventilation rate (9 L/min for an average human) and Falv 3 

the alveolar ventilation rate (6 L/min) (ICRP, 2002). 4 

For the lung: 5 
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where Ftotal designates the sum of the F values for the following organs or tissues: adipose 7 

tissue, adrenals, bone marrow, brain, breast, heart, kidneys, liver, muscles, other organs and 8 

tissues, skin, testes and thyroid. 9 

For the liver, blood comes from the arterial pool, spleen, pancreas, stomach and gut, and there 10 

is metabolism occuring in the liver (see further): 11 

 

livermet

liver

liver

liver

stomach

stomach

stomach

gut

gut

gut

pancreas

pancreas

pancreas

spleen

spleen

spleenarteport

liver

QK
P

C
F

P

C
F

P

C
F

P

C
F

P

C
FCF

t

Q

 (4) 12 

where Fliver, is: 13 

 stomachgutpancreasspleeneportliver FFFFFF  (5) 14 

 For arterial blood: 15 
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For venous blood: 17 
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where i designates the adipose tissue, adrenals, bone marrow, brain, breast, heart, kidneys, 1 

liver, muscles, other organs and tissues, skin, testes and thyroid. 2 

For epoxy metabolite (EB) in the liver: 3 
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 (8) 4 

For simplicity, the possibility of EB molecules to come back to the liver through blood 5 

circulation has been neglected, assuming susbtantial elimination through secondary 6 

metabolism and exhalation. To obtain more relevance, incorporating EB kinetics may be 7 

proposed later, based on the PBPK model for butadiene and major metabolites proposed by 8 

Brochot et al. (2007).  9 

 10 

2.2. Exposure and epidemiological data 11 

We used data from Higashino et al. (2007) on human exposures to 1,3-butadiene in Japan. 12 

The average concentration in the general environment is 0.25 µg/m
3
, with a background 13 

concentration 0.06 µg/m
3
 in unpolluted areas. Exposure concentrations above 0.8 µg/m

3
 are 14 

only found in vicinity of industrial activities. Lifetime excess cancer risk level is estimated at 15 

10
-5

 for an exposure concentration of 1.7 µg/m
3
 (Higashino et al., 2007). In Japan, 0.03% of 16 

the total population (that is 36 000 persons) are exposed to concentrations exceeding this 17 

value. With a molar mass of 54.09 g/mol for butadiene, 1.7 µg/m
3
 corresponds to 18.7 10

12
 18 

molecules/L.  19 

 20 

2.3. Simulation Software used  21 

We used the Systems Biology Workbench (SBW) (Sauro et al., 2003), version 2.0.39. We 22 

implemented our PBPK model in Jdesigner. The model was then converted to an SBML file 23 
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and input in the Dizzy 1.11.4 software (Ramsey et al., 2005), which is able to perform 1 

stochastic simulations of chemical kinetics. We used the Gillespie stochastic algorithm 2 

(Gillespie, 1977) for stochastic simulations. It is an algorithm for modeling the kinetics of a 3 

set of coupled chemical reactions, taking into account stochastic effects from low copy 4 

numbers of the chemical species. With the same differential equation, the deterministic 5 

approach regards the time evolution as continuous, whereas the stochastic approach regards 6 

the time evolution as a kind of random-walk process. In Gillespie's approach, chemical 7 

reaction kinetics are modelled as a Markov process in which reactions occur at specific times 8 

separated by Poisson-distributed intervals. The mean interval is recomputed each reaction 9 

time. At each reaction time, a specific chemical reaction occurs, randomly selected from the 10 

set of all possible reactions with a probability given by the individual reaction rates. 11 

 12 

2.4. Stochastic simulations at steady state 13 

Exact stochastic simulators track the actual number of molecules involved in a set of reaction 14 

in a given portion of space. It is impossible for them to handle as many molecules as can be 15 

found in an entire organ. We first computed the steady state concentration values in each 16 

organ using the deterministic (ordinary differential equation) simulator of the SBW, with 17 

continuous inhalation exposure concentrations of 0.25 and 1.7 mg/m
3
 of BD. Initial condition 18 

for the number of molecules in a cell was set to the deterministic value from the PBPK model. 19 

We consider that a human has typically about 10
14

 cells. In our PBPK model, the total volume 20 

of a man is 75 L, which results in a mean density of 1.37 10
12

 cells/L. 21 

 22 

Except for liver, the uptake of butadiene is performed from the arterial blood, in which 23 

butadiene concentration was set at steady state deterministic value from PBPK model. The 24 
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kinetic equation for one cell is similar to that of the organ to which it belongs except for the 1 

flux value: 2 

 organ

cell

artcell

cell

P

C
CF

dt

Qd )(

 (9) 3 
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This equation cannot be computed directly in the softwares we use because of rounding errors 5 

due to the extremely small value of Fcell  (less than 10
-13

 for most organs). We reformulate 6 

equation (9): 7 
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 (10)  8 

where is the Avogadro’s number, Mbutadiene is the molar weight of butadiene and Ncell the 9 

number of molecules in the cell. This equation can be studied with Jdesigner and Dizzy with a 10 

fixed Cart  value. Equation (4) was reformulated in a similar way.  11 

 12 

We performed simulations with five organs: spleen, which has the lowest partition coefficient 13 

over blood (0.77), fat with the highest one (22), marrow, which has a low scaled flux value 14 

(0.0786 min
-1

), kidney with a high scaled flux value (3.9838 min
-1

) and liver, for which we 15 

studied the concentrations of both butadiene and its first metabolite.  16 

That choice of organs is also relevant relative to cancer risk of butadiene. Mutagenicity has 17 

been shown to occur for spleen and marrow of rodents (Preston, 2007). The same author 18 

reported butadiene-induced lymphomas so as lung and liver tumours in mice. 19 
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We ran 100 simulations at steady state. For spleen, kidney and liver, we reported the number 1 

of molecules at time 100 min, which is large compared to the time needed to reach 2 

equilibrium in the deterministic model for these organs. For marrow and fat, we reported this 3 

number at 500 min and 10000 min respectively due to a longer time to reach equilibrium. 4 

 5 

2.5. Coupling with cancer PD model 6 

To assess how dose-response curves are affected by stochasticity at the cellular level, we 7 

coupled the stochastic PBPK model described above to a linear model with a threshold for 8 

effect, which belongs to the family of the “hockey stick models” introduced into carcinogenic 9 

risk assessment by Cornfield (1977). For a given cell at a given time, the probability R of 10 

carcinogenesis is supposed to be proportional to max(N(t)-N0 , 0) where N(t) is the number of 11 

molecules of BD metabolites per cell at time t, N0 the threshold number of molecules to get an 12 

effect. We chose 1 as the threshold number of molecules per cell able to initiate liver 13 

carcinogenesis with a non-zero probability. This is the minimum reasonable number and it 14 

corresponds to approximately twice the general environment exposure in Japan (Higashino et 15 

al., 2007). This is just a choice for simulations. It is not based on particular knowledge about 16 

butadiene mechanisms of carcinogenicity. It is also worth noting that a purely linear dose-17 

response would not be affected by stochasticity. We adapted the proportionality factor 18 

between R and excess number of molecules so that the lifetime excess cancer risk level 19 

estimated for a continuous exposure to 1.7 µg/m
3
 BD is 10

-5
, as in the study by Higashino et 20 

al. (2007). 21 

We performed simulations for exposure concentrations from 0 to 1.7 µg/m
3
, with a step of 0.1 22 

µg/m
3
. For each concentration, we simulated, at steady state, the number of BD metabolites 23 

molecules in 100 cells exposed during 100 minutes.  24 
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 1 

2.6. Stochastic simulations in time-varying conditions 2 

To study the system in a non steady-state situation (e. g. for a time-varying change in the 3 

exposure level) the exposure scenario simulated 9 hours a day to a BD concentration of 1.7 4 

µg/m
3
, followed by 15 hours a day to a BD concentration of 0.25 µg/m

3
. This is typically 5 

what a factory worker would be exposed to in Japan (Higashino et al., 2007).  For simplicity, 6 

holidays and week-ends were not accounted for.  7 

We added a component (accounting for a liver cell) in parallel to the liver in the PBPK model. 8 

It was not possible to implement time-varying deterministic concentrations in Jdesigner and 9 

Dizzy and use the same methods as in section 2.4. Therefore, we had to simulate with Dizzy 10 

simultaneously the dynamics in all organs and in a cell. However, we could not track all the 11 

molecules in the body even for an environmental exposure level of BD. Therefore, we had to 12 

adapt the PBPK model equations implemented in Jdesigner and Dizzy, so that simulated 13 

organ concentrations were approximately the deterministic ones and so that Gillespie 14 

algorithm was unchanged for the cell.  15 

Equation (10) is formally equivalent, relative to dynamics at the cell level, to the following 16 

equation: 17 
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                                 (13)                               18 

Consequently, if, in the PBPK model equations, we multiply the concentrations in all 19 

compartments but the liver cell by 
butadieneMdensityCell _

100

, fix at 0.01 the volume of the 20 

liver cell (both operations largely minimise stochasticity at organ level so as the contribution 21 
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of the liver cell to the whole system) and divide Forgan by 100, we have approximately the 1 

same kinetics at the organs level, without affecting the kinetics for Q_cell. The Gillespie 2 

algorithm is unchanged, because the reaction probability density function is unchanged. We 3 

indeed checked with Jdesigner and Dizzy that, once the model was adapted, the stochastic 4 

values of all organ concentrations differed by less than 5 % from their deterministic values 5 

during the simulations we performed. Using 10 and 0.1 instead of 100 and 0.01 in equation 6 

(13) would have led a large difference between deterministic values and stochastic ones. In 7 

contrast, using 1000 and 0.001 would have led to huge calculation times for Dizzy.  8 

We focused here only on EB in the liver. We performed simulations for 20 cells during the 15 9 

hours in the general environment and reported cell concentration. The concentrations at time 0 10 

(time at which the subject is just leaving industrial vicinity) are extracted from simulations 11 

with Jdesigner over 50 days. For the last 10 days, the values at time 0 only differed by 0.1 %, 12 

i.e. dynamics steady state was reached. Cancer risk was computed at each time step (every 13 

minute). 14 

 15 

3. RESULTS 16 

3.1. Stochastic simulations at steady state 17 

The mean number of molecules in a cell, the standard deviation and coefficient of variation 18 

per organ for exposure concentration 1.7 µg/m
3
 are presented in Table V. Stochastic mean 19 

values equal deterministic ones. 20 

The stochastic variability is mainly influenced by the partition coefficient (which determines 21 

the mean number of molecules at steady state). The fact that marrow and kidney have 22 

comparable standard deviations but very different mean number of molecules suggests that 23 

low blood flow to the cell also tends to decrease variability relative to the mean value. The 24 
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results obtained for metabolites in the liver are presented in Figure 2. There is a large 1 

variability of the number of metabolites in a liver cell (mean 2.91, standard deviation 1.71 2 

resulting in coefficient of variation of 0.588). Simulations for exposure concentration 0.25 3 

µg/m
3
 led to the same conclusions relative to organ characteristics and coefficient of variation 4 

(data not shown).  5 

 6 

3.2. Coupling with cancer model 7 

Figure 3 shows that accounting for stochasticity when coupling the PBPK model and cancer 8 

model increased the excess of risk even below the deterministic threshold of 0.6 µg/m
3
. The 9 

dose-response curve appears to have two distinct regimes: a “quadratic” looking region and a 10 

“linear” looking one, closed to the deterministic response. 11 

 12 

3.3. Stochastic simulations in time-varying conditions 13 

Figure 4 shows the results at dynamics steady state for metabolites in one liver cell for 15 14 

hours at exposure concentration 0.25 µg/m
3
 after 9 hours at exposure concentration 1.7 µg/m

3
. 15 

The metabolite mean concentration quickly reaches low levels (half of the initial value is 16 

reached after 13 minutes), at which stochasticity is high and kinetics is slow.  17 

The cancer model was used to assess the instantaneous excess risk of liver cancer during this 18 

period. There was no increased risk for times over 65 minutes, according to the deterministic 19 

approach. The sum over time of instantaneous excess risk values during this period outside 20 

the industrial vicinity corresponded to 12 minutes at steady state exposure at the high 21 

concentration, which is low compared to the 9 hours exposure. In contrast, when accounting 22 

for stochasticity, the mean sum of excess risk corresponded to 85 minutes of high exposure.  23 

 24 
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4. DISCUSSION 1 

 2 

The simple algorithms outlined in the works by Gillespie (Gillespie, 1977) permit the 3 

modeling of microscopic stochastic phenomena (Haseltine and Rawlings, 2002). Gillespie’s 4 

algorithms can be so expensive computationally that alternatives have been proposed to 5 

approximate exact simulations (Haseltine and Rawlings, 2002 ; Rathinam et al., 2003). For 6 

the present work, we chose to use the exact algorithm, for simulations could be performed in a 7 

reasonable amount of time with modern calculation stations, thanks to the progress that 8 

computer technology has still made in the past few years. 9 

Coupling our PBPK model to a model of excess risk of cancer affected dose response curve. It 10 

looks curvilinear, with a breakpoint dose lower than the theoretical one. Mutagenesis data 11 

from Elhajouji et al. (1997) showed experimentally comparable profile, with a slight increase 12 

in mutagenicity, then a highly significant steep increase for compounds likely to have a 13 

threshold for effects. We do not pretend to fully assess cancer risk associated to exposure to 14 

butadiene. Our study is a simulation study aiming at assessing whether or not stochasticity 15 

should be considered when assessing risk. Therefore, at least in the case of exposure to low 16 

doses of compounds having a threshold for carcinogenicity, stochasticity in kinetics should 17 

not be neglected.  18 

In a paper on dose-response and threshold-mediated mechanisms in mutagenesis, Lovell 19 

(2000) points that “absolute” threshold are difficult to estimate from toxicity data due to 20 

background noise as a consequence of stochasticity. The concept of absolute threshold may 21 

therefore make no physical sense at all. Lovell is in favour of “pragmatic” thresholds, 22 

constructed through dose–response models (in particular biology-based dose-response 23 

(BBDR) models) coupled with knowledge about what level of response is biologically 24 
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important, and what level is not. We believe that dose-response models construction should 1 

seriously consider stochasticity to get the best accurate representation of reality at low doses. 2 

BBDR models would permit to derive a deterministic approximate threshold, then 3 

stochasticity studies would permit to derive a realistic one based on stochastic simulations 4 

with BBDR models coupled with PBPK models. 5 

To our knowledge, this study is the first time that the dynamics of compounds at the cell level 6 

is studied in parallel to the dynamics at the body level. Coupling microscopic and 7 

macroscopic dynamics is a real challenge, because of the very large scale difference between 8 

numbers of molecules in cell and in organ. Here, we achieved the coupling of PBPK models 9 

with tools developed in the framework of systems biology through two different approaches. 10 

In case of steady state for organs, concentrations in PBPK compartments were fixed and exact 11 

dynamic equations for butadiene in the cell was derived. In case of time varying 12 

concentrations in the organs, we adapted the equations to get an approximate simulation of the 13 

dynamics at the cell level. We were then able to assess the influence of stochasticity relative 14 

to dose-response in toxicant risk assessment, with constant or time-varying exposure 15 

concentration. This coupling is not limited to toxicology. It can be immediately generalized to 16 

the study of stochastic concentration of many compounds in the cell, like for instance 17 

pharmaceuticals and hormones which may be effective at extremely low concentrations 18 

(Gurevich et al., 2003).  19 

 20 
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Table I. Values of the organ or tissue volumes (in L). These constants were calculated for a 1 

standard man of 1.76 m and 73 kg, using the organ weights given by the ICRP 2002 Pub 89 2 

(p.18(T 2.8)  p.19(T 2.9)). Density for the organs is supposed equal to 1 excepted for adipose 3 

tissues (density 0.9) and bones (density 2) 4 

Tissue / organ Symbol Value 

Adipose Vadip  18.8 

Adrenals Vadrenal  0.014 

Arterial blood Vart 1.40 

Venous blood  Vven  4.20 

Bone  Vbone  2.75 

Brain  Vbrain  1.45 

Breast  Vbreast  0.025 

Gut  Vgut  1.02 

Gut lumen Vgut_lumen 0.65 

Heart  Vheart  0.33 

Kidney  Vkidney  0.31 

Liver  Vliver  1.80 

Lung  Vlung  0.50 

Upper respiratory tract  Vurt  0.15 

Bone marrow  Vmarrow 3.65 

Muscles Vmuscle  29.0 

Others Vother  7.06 

Pancreas  Vpancreas  0.14 

Skin  Vskin  3.30 

Spleen  Vspleen  0.15 

Stomach  Vstomach  0.15 

Stomach lumen Vstom_lumen 0.25  

Testes Vtestes 0.056 

Thyroid Vthyroid 0.019 

 5 
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Table II. Blood flows for the various organs or tissues (Unit L/min). These have been 1 

computed using cardiac output, percent blood flows per tissue mass and organ weights given 2 

in ICRP 2002 Pub 89 [14] (Table 2.8  p18-19, Table 2.39 p28, Table 2.40  p29) or provided 3 

by William & Leggett [15]. 4 

Tissue or organ Symbol Value 

Adipose Fadip 0.564 

Adrenals Fadrenal 0.02 

Brain  Fbrain  0.78 

Breast  Fbreast  0.00 

Gut  Fgut 0.98 

Heart  Fheart  0.35 

Kidney  Fkidney  1.23 

Liver  Feport 0.45 

Lung  Ftotal 6.72 

Bone marrow  Fmarrow  0.29 

Muscles Fmuscle  1.11 

Others Fother 0.19 

Pancreas  Fpancreas 0.065 

Skin  Fskin 0.33 

Spleen  Fspleen  0.19 

Stomach  Fstomach 0.065 

Testes Ftestes 0.004 

Thyroid Fthyroid 0.094 

 5 



21 

 

  1 

Table III. BD and EB-specific parameters. These have been taken from Brochot et al. (2005) 2 

for BD parameters and Brochot et al. (2007) for EB parameter. 3 

Parameter Symbol Value Unit 

BD fat over blood partition coefficient  22 – 

BD lung over air partition coefficient Plung_over_air 0.653 – 

EB liver over blood partition coefficient Pliver_EB 0.59 – 

Metabolisation rate for BD into EB Kmet  0.3 L/min 

 4 

Table IV. Fat content for the various organs or tissues. These have been taken from Fiserova-5 

Bergerova (1983) and Van der Molen (1996). Default value is 0.049, which corresponds to 6 

“remaining organs” in Van der Molen (1996). 7 

Tissue or organ Value 

Adipose 0.859 

Adrenals        default 

Brain  0.11 

Breast         default 

Gut  0.065 

Heart  0.083 

Kidney  0.052 

Liver  0.049 

Lung  0.017 

Bone marrow  0.186 

Muscles 0.064 

Others        default 

Pancreas  0.105 

Skin  0.15 

Spleen  0.03 

Stomach         default 

Gonads        default 

Thyroid        default 

 8 
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Table V. Mean number of molecules in a cell, standard deviation and coefficient of variation 1 

per organ at steady state at time 100 (5000 for fat, 500 for marrow) for 100 simulations 2 

performed with Dizzy. Exposure concentration is 1.7 µg/m
3
.  3 

Organ Mean number of molecules in a cell Standard deviation Coefficient of variation 

Fat 379.3 10.0 0.026 

Marrow 82.3 4.49 0.0545 

Kidney 22.9 4.52 0.197 

Liver 15.2 3.2 0.211 

Spleen 13.6 3.86 0.284 

 4 
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Figure legends 1 

 2 

Figure 1. PBPK model for butadiene, as implemented in Jdesigner. 3 

Figure 2. Distribution of BD metabolites number per cell in a liver cell at steady state at time 4 

100 for 100 simulations performed with Dizzy. Exposure concentration is 1.7 µg/m
3
. 5 

Figure 3. Excess liver cancer risk in relation to exposure concentration. The deterministic 6 

probability is represented by the plain line. The points are the mean values obtained by 7 

stochastic simulations for 100 cells. 8 

Figure 4. Kinetics of butadiene metabolites in one liver cell for a man leaving industrial 9 

vicinity to general environment. Plain line is the deterministic model and points are stochastic 10 

predictions for different time points (the time step is one minute).  11 
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Figure 1. 1 
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Figure 2.  5 
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Figure 3.  3 
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Figure 4.  3 
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