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Abstract  

Laser-Induced Breakdown Spectroscopy (LIBS) was employed for on-line and real time process 

monitoring during nanoparticle production by laser pyrolysis. Laser pyrolysis has proved to be a reliable 

and versatile method for nanoparticle production. However, an on-line and real time monitoring system 

could greatly enhance the process optimization and accordingly improve its performances. For this 

purpose, experiments aiming at demonstrating the feasibility of an on-line monitoring system for silicon 

carbide nanoparticle production using the LIBS technique were carried out. Nanosecond laser pulses were 

focused into a cell through which part of the nanoparticle flux diverted from the production process was 

flowed for LIBS analysis purposes. The nanoparticles were vaporized within the laser-induced plasma 

created in argon used as background gas in the process. Temporally-resolved emission spectroscopy 

measurements were performed in order to monitor nanoparticle stoichiometry. Promising results were 

obtained and on-line Si/CX stoichiometry was successfully observed. These results put forward the 

possibility of real time correction of the nanoparticle stoichiometry during the production process.  
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1. Introduction  

Over the last years, research in the field of nanostructured materials synthesis has become 

increasingly important. Such materials designed at a nanometric scale are expected to show new 

properties of great interest to a wide range of industrial applications. In this context, the development of 

nanoparticle-based materials has advanced rapidly and along with it the need for generic and safe 

nanoparticle production systems. Producing and commercializing nanoparticle-based materials for 

different applications (composites, cosmetics, catalysis, optics,…) require industrial equipments 

permitting large-scale production of a wide range of nanoparticles. Furthermore, these industrial lines are 

expected to produce nanoparticles with constant quality (size distribution, chemical composition).  

For this purpose, the development of an on-line monitoring system allowing a real time analysis, 

both qualitative and quantitative, of some characteristics of the nanoparticles such as the chemical 

composition and the size is highly desirable. The monitoring of some of these characteristics will thus 

provide quasi instantaneous feedback for process control. This is of primary importance while the 

development of composite nanoparticles arouses a growing interest. These nanoparticles are elaborated 

from several elements with the aim of creating materials with advanced functionalities. The large number 

of elements these nanoparticles consist of has actually emphasized the need for on-line stoichiometry 

control. In addition to process control, production safety requirements could be satisfied by utilizing on-

line monitoring systems to secure the installations producing, handling and integrating nanoparticles. A 

tool devised both for in-situ and real time chemical and physical identification of nanoparticles could 

detect their release in the ambient air and therefore could assure safety for the operating personnel and the 

surrounding environment.  

Among all the methods known, the continuous nanoparticle synthesis processes are very 

interesting for nanoparticle production at industrial scale. Indeed, with these techniques, nanoparticles are 

produced continuously by injecting a continuous flow of reactants in a reactor leading to large daily 

production rates. Some of these methods are already developed at industrial scale for the production of 

metals or oxides nanoparticles (for example TiO2 nanoparticles by the Aerosil® process of DEGUSSA) 

and the development of industrial processes for non-oxide nanoparticles is currently in progress. Laser 

pyrolysis is one of these promising techniques. Basically, its principle rests on the interaction between a 

continuous high-power CO2 laser beam and a continuous flux of gaseous or liquid reactants. Reactant 



 4 

molecules absorb laser radiation which results in their dissociation. Afterwards, molecules recombine 

with one another within the pyrolysis flame to form nanoparticles. Thereby, a wide range of nanoparticles 

can be produced. The process yields a continuous high production rate of nanoparticles with a good 

control of their size, structure and chemical composition [1]. Furthermore, nanoparticles produced in this 

way are usually weakly agglomerated. In addition, the method is very efficient to produce composite 

nanoparticles which characteristics can be easily adjusted by varying some processing parameters such as 

the laser power density, the flow rate, the composition and dilution of the reactants.  

Though this method assures a good control of compound stoichiometry, stoichiometry variations 

in the course of nanoparticle production are not to be neglected. Thus, the production rate of nanoparticle 

compounds with the right stoichiometry could be enhanced with an on-line and real time quality control. 

With this aim in view, the LIBS technique was selected. LIBS has been demonstrated to be a versatile, 

reliable analytical method for multi-elemental analysis of solid [2], liquid [3], gas [4,5] and aerosols [6,7] 

both for qualitative and quantitative measurements. It has the advantage of being non-intrusive and no 

sampling is required. Moreover, measurements can be performed at remote distances, in real time and in-

situ without sample preparation. All these characteristics make LIBS a particularly well adapted tool to 

analyze materials which are not easily accessible or for which confinement is required.  

The LIBS analysis method has already been utilized in diverse industrial applications. Its 

potential in the steel industry at different stages of the production chain has already been demonstrated 

[8,9]. For instance, the LIBS technique has been applied for on-line monitoring of molten steel in order to 

improve the steel quality and to obtain a better production gain. In the nuclear industry [10], LIBS has 

been selected as the most adequate technique when in-situ material analyses were required. It was the 

most practical method to implement in a hostile environment with high temperatures and level of 

radiation. Recently, concerns have been raised regarding particles of micrometric and submicrometric 

sizes emitted in ambient air (from different sources such as plants, engines….) and their possible hazard 

towards human health and environment. Several studies have demonstrated the LIBS potentialities for 

particle detection [11]. LIBS was therefore used for on-line monitoring of metal laden aerosols in 

industrial production, combustion processes [12,13,14], environmental purposes [15,16] and promising 

results were obtained. All these studies point out the advantages of LIBS for process control and particle 

detection both on-line and in real time.  
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In this paper, we report the results of a study coupling for the first time the LIBS technique and a 

laser pyrolysis reactor. The LIBS equipment was integrated into a laser pyrolysis unit developed by the 

French Atomic Energy Commission (CEA – Saclay, France) with the aim of monitoring on-line and in 

real time SiCX composite nanoparticle stoichiometry. These nanoparticles are synthesized prior to 

nanostructured silicon carbide elaboration, the latter being a promising material for high temperature 

applications in the nuclear energy industry. Our main objective was centred on nanoparticle stoichiometry 

determination while the process was being operated. Stoichiometry calculation was achieved using 

temporally-resolved emission spectroscopy measurements followed by plasma analysis. The results 

obtained are reported and discussed.  

 

2. Experimental set-up: LIBS & laser pyrolysis 

2.1 Instrumentation 

2.1.1 Laser pyrolysis experimental set-up 

The experimental set-up (figure 1) consists of a reactor equipped with an inlet nozzle at its 

bottom, an outlet duct at its top and many optical windows among which those for the laser beam passage 

and the pyrolysis flame monitoring. Reactants, namely SiH4 and C2H2 for SiCX nanoparticle synthesizing 

are admitted in the pyrolysis reactor through the inlet nozzle, the latter being flat or cylindrical. Reactants 

can be injected with different flow rates. A continuous high-power CO2 laser beam is expanded to twice 

its starting diameter with an optical system and focused in the vertical direction using a 500 mm focal 

length zinc-selenium (ZnSe) cylindrical lens. The resulting 30 mm width elliptical cross-section beam 

passes through the reactor perpendicularly to the above mentioned reactant jet coming out from the 

nozzle. A wide range of laser power density values for reactant irradiation are accessible by adjusting the 

distance between the cylindrical lens and the nozzle. The position of maximum focusing is attained for a 

distance between the cylindrical focusing lens and the nozzle matching the lens focal length and 

corresponds to the maximum irradiance of 50 kW/cm2. A co-flow of argon gas is injected around the 

reactants in order to confine the reaction. At the same time, a stream of argon sweeps all the inner 

window surfaces to avoid particle deposition. Eventually, the nanoparticles are evacuated from the reactor 

with argon as a carrier gas. Then, they are directed towards the nanoparticle collector thanks to a pump 

placed downstream of the collector and connected to an exhaust-treatment system constituted of a 
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scrubber and a washer. It should be noted that the production rate of this unit can go beyond 1 kg of 

silicon carbide (SiC) nanoparticles per hour. 

 

2.1.2 LIBS experimental set-up 

The experimental set-up of the LIBS system mounted on the laser pyrolysis process is depicted 

on figure 2. In order to carry out the LIBS experiment, a metallic flow cell devoted to LIBS analysis 

through which part of the nanoparticle flow was diverted was installed on the process. A bypass line was 

specially designed to achieve this diversion and to enable an on-line continuous sampling from the main 

stream of nanoparticles. Using the bypass line, the inlet end of the cell was connected to the nanoparticle 

production conduit upstream of the nanoparticle collector. The outlet end was linked to the exhaust 

conduit downstream of the collector. The pre-existent pressure difference between the two connection 

points sufficed to make the nanoparticles carried by the argon gas stream circulate through the cell for 

LIBS analysis purposes. A small filter collector was placed downstream of the cell outlet to prevent the 

particles from being released in the main line. A laser pulse of 5 ns duration and 50 mJ energy originating 

from a Q-switched Nd-Yag laser ( = 1064 nm) operated at 20 Hz was focused inside the cell using a 

fused silica plano-convex lens of 50 mm focal length the cell was fitted with. The resulting beam waist 

value was about 100 µm leading to an estimated fluence value of 150 J cm-2 at the focal point. The LIBS 

signal originating from the plasma created in the argon-nanoparticle mixture was collected through a 

quartz window perpendicularly to the LIBS laser beam with a telescope of 150 mm focal length. The 

plasma emission was imaged onto the entrance a 50 µm diameter core optical fiber. The fiber was linked 

to an Echelle spectrometer (Mechelle 5000, resolution of 0.1 nm at 500 nm) equipped with a fast 

intensified CCD camera (Andor Istar, model DH734-18F-03).  

 

2.2 Nanoparticle synthesizing parameters 

The LIBS experiments planned required nanoparticle stoichiometry and concentration to vary. 

Table 1 reports the parameters used to produce nanoparticles for this study. The experiments were carried 

out with a defocused beam (-150 mm) corresponding to an energy of 420 W/cm2. The relative flow rates 

of SiH4 and C2H2 were set so that nanoparticles having the following theoretical stoichiometries SiC, 

SiC2, SiC4 and SiC8 could be synthesized, the chemical yield for laser pyrolysis experiments using 
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mixtures of SiH4 and C2H2 being close to 1 (all Si and C atoms are recovered in a condensed form) [17]. 

The mass concentration was varied from 1.6 to 11.2 g per cm3 by changing the ratio between the 

reactants flow rate and the argon flow rate. The production rate in mass was calculated considering a 

chemical yield of 1 for all the conditions.  

 

3. Foreword: stoichiometry  

Stoichiometry determination requires to establish a relationship between the measured 

spectroscopic intensities and the densities of the different elements the nanoparticles consisted of prior to 

vaporization. A simple equation links the measured intensity ratios to the elemental density ratios 

provided several conditions are fulfilled. The plasma has to be in local thermal equilibrium state (LTE) 

and optically thin for the transitions observed. If these conditions are met, the equation yielding 

stoichiometry S by relating the integrated intensity ratio to the density ratio writes 
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where a and b are the elements studied, ij and kl the selected transitions for a and b elements respectively, 

a
ijI and b

klI  the measured integrated intensities, aijl and b
kl  the wavelength of the selected 

transitions, aZ and bZ  the partition functions of a and b elements in a given ionization stage, ig  et 

kg statistical weight of upper states with the corresponding a
iE  and b

kE  energies, a
ijA  and b

klA  

transition probabilities, aN  and bN  total number of a and b atoms in a given ionization stage and Te 

the electronic temperature.  

Basically, stoichiometry determination consists of measuring the ratio of the total number of 

atoms of each element. With the above formula, only ratios of total number of atoms in a given ionization 

stage is accessible. Nevertheless, stoichiometry can be inferred from ratio of total number of atoms in the 

neutral state on the condition that the ion density be negligible compared to that of neutral density. 

Temporally-resolved emission spectroscopy allows the determination of the right temporal window 

matching this criterion and the other two: LTE and optically thin plasma. In the paragraphs to follow, a 

brief description of our time-resolved spectroscopic measurements will be presented. LTE validity will be 
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discussed and the electronic temperature calculated. Finally, plasma optical thickness will be examined 

and stoichiometry results will be presented and discussed.  

 

4. Results 

4.1 Lines identification 

In order to identify all the emitting species of interest vaporised within the plasma and to 

determine the best recording parameters for stoichiometry determination, time-resolved spectroscopic 

measurements were carried out. Series of spectra were recorded as a function of time delay (td) and ICCD 

gate width. Two series of measurements corresponding to two ranges of time delay were performed. In 

the first series a 100 ns ICCD gating time was chosen with time delay varying from 200 ns to 2.2 µs. In 

the second series, the time delay was varied from 2.2 µs to 60 µs using a gate width of 2 µs. In order to 

enhance the signal-to-background ratio, spectra were accumulated over several laser-induced spark 

events. Each spectrum consisted of an accumulation of 400 and 200 laser shots for the first and second 

series respectively. The same recording parameters were used during the vaporisation of nanoparticles 

with different stoichiometry (Si, SiC, SiC2, SiC4 and SiC8). Lines identification was performed using the 

NIST [18] database.  

In the early times of the laser spark event (200 ns < td < 2 µs), many widened argon lines were 

detected up to approximately 2 µs delay time. The strongly widened H line at 656.279 nm originating 

from the laser pyrolysis reaction also appeared in the spectra. The strong line widening observed is 

characteristic of Stark broadening and suggests a high electronic density in the early times of plasma 

expansion. Singly ionised Ar and Si ions (Ar II at 480.602 nm and Si II at 385.602 nm, 386.26 nm, 

412.807 nm, 413.089 nm, 504.103 nm, 505,598 nm, 634.71 nm and 637.13 nm) were identified. Line 

intensities of these ions decreased rapidly due to plasma recombination. These ions were no longer visible 

beyond 2 µs time delay. No carbon ions were seen in the recorded spectra. Many neutral Ar and Si lines 

were detected with a good signal-to-background ratio and their intensity lines increased with decreasing 

ion concentration. Neutral carbon is usually not easily detected because of its low transition probability 

values. Thus, only the strongest C line at 247.85 nm was observed during our measurements. Figure 3 

shows a spectrum recorded (time delay 4.2 µs, ICCD gate width 2 µs) during vaporisation of SiC2 

nanoparticles within the plasma created in argon as background gas. The nanoparticle concentration value 
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was calculated to be 5.3 µg per cubic centimetres according to table 1. The carbon line at 247.85 nm and 

six Si lines were clearly identified. Many argon lines were identified and used for plasma analysis 

purposes both for electronic temperature and density measurements. For time delay beyond 

approximately 8 µs, molecule formation of C2 was observed. No other molecule formation was detected.  

 

4.2 Plasma analysis 

4.2.1 Electronic density  

The temporal evolution of the electronic density was obtained from Stark broadening 

measurements. The electronic density was calculated by fitting computed spectra with experimental data. 

In the early times of the laser spark event, the plasma is highly ionized and Stark broadening dominates 

over other broadening effects. Spectral line shapes were then simulated using Lorentzian profiles for these 

functions are well suited to approximate Stark broadened lines [19]. For usual LIBS conditions, one 

generally assumes ion contribution to Stark broadening is negligible which results in the simplifying of 

the Stark width expression [20]. A linear dependence of the Stark width on the electronic density Ne was 

then assumed for the calculations according to the well known formula  

ref
e

e
refStark

N

N
W2      (2) 

In the above equation, Stark  is the measured Stark width (FWHM), Wref  is the half width at 

half-maximum Stark parameter for a given electron density ref
eN . The apparatus width of the 

spectrometer was measured using a mercury-argon calibration lamp. The 750.386 and 751.465 nm argon 

lines and the H line at 656.279 nm were chosen for electronic density determination for Stark widths of 

these lines have well known tabulated values [21, 22]. Figure 4 shows an experimental spectrum recorded 

with a 4.2 µs time delay and a 2 µs gate width and compared with a simulated profile. The computed 

spectrum fits the experimental profile very well for an electronic density value of 9 1016 cm-3. Seventy 

percent of the values measured using the H line fall within the range of 20 to 50 percent agreement with 

those obtained from argon lines. The rest of the points scores badly within the range of 50 to 90 percent 

agreement. Figure 5 presents the temporal evolution of the electronic density during SiC and SiC8 

nanoparticle vaporization. No significant differences of electronic densities were observed for both 
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stoichiometries. Electronic density values of SiC and SiC8 are almost identical for time delays ranging 

from 2 µs to 10 µs. For time delays inferior to 2 µs, the slight density difference could be accounted for 

by the difficulty encountered when simulating strongly widened experimental lines appearing in the early 

times of the plasma formation.  

 

4.2.2 Electronic temperature 

The electronic temperature was calculated using Boltzmann plot method based on the following 

equation  

C
Tk

E

Ag

I

e

n

nmn

nmnmln      (3) 

n and m being the upper and lower levels of the selected transition respectively, Inm the integrated 

intensity of the transition, nm its wavelength, gn statistical weight of the upper state level, Anm transition 

probability, En energy of the upper state level, Te the electronic temperature, k Boltzmann constant, and C 

a constant.  

The 17 strong argon lines which were chosen for the Boltzmann plots are listed in table 2. In 

order to carry out calculations using different spectral regions, the Echelle / ICCD system was calibrated 

with a deuterium tungsten-halogen light source (DH-2000-CAL, Ocean Optics). The blackbody radiation 

emitted from the lamp allowed calibration of the acquired spectra. The calculations are therefore more 

precise for this calibration gives access to a wide range of lines with different upper energy levels. One of 

the Boltzmann plot used for temperature determination is displayed in figure 6. The evolution of the 

plasma temperature is shown in figure 7 as a function of time delay when irradiating SiC nanoparticles. It 

should be noted that the electronic temperature did not show a great sensitivity to stoichiometry and 

concentration variations within the ranges investigated.  

 

4.2.3 LTE validity 

Plasmas with high electronic densities (namely, electronic densities superior to 1016 cm-3) such as 

laser-induced plasmas are very close to the local thermal equilibrium (LTE). The assumption of LTE is 

usually made for laser generated plasmas obtained in air or argon at atmospheric pressure [23]. Usually, 
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the LTE validity verification consists of calculating the lower limit of electron density NL for the LTE to 

be established according to a criterion such as the Mac Whirter criterion: 

312106.1 ETNN eLe     (4) 

where E is the highest energy difference between upper and lower energy levels (eV) populated 

according to LTE conditions and between which a transition is possible. For the calculation of NL , the 

chosen electronic temperature value corresponded to the maximum time delay of 10 µs for which 

electronic density could be measured, that is to say, a value of around 12300 K according to figure 7. The 

upper and lower energy levels of the 419.10 nm argon line match the above criteria for the evaluation of 

E which value equals therefore 2.95 eV according to table 2. Eventually, NL value was found to be 4.5 

1015 cm-3. According to the electronic density graph of figure 5, LTE validity is therefore established for 

time delay below 10 µs. Beyond this delay range, electronic density measurement became uneasy as Stark 

broadening effect was diminishing.  

 

4.2.4 Temporal window choice 

Equation (1) allowing stoichiometry calculation only applies under LTE conditions. The LTE 

criterion was found to be fulfilled for time delay values under 10 µs. For reasons explained previously 

(3), ion density must be negligible compared to that of neutrals for equation (1) to be applied. Temporal 

evolution of lines emitted from the plasma showed that no ion emission was detected for time delays 

higher than 2µs. Total number of Si and C ions are therefore assumed to be negligible and stoichiometry 

determination can be achieved using equation (1). The best Boltzmann’s plots were obtained for a time 

delay of 4.2 µs which eventually resulted in our selecting this value for all our stoichiometry 

measurements.  

 

4.3 Stoichiometry calculation. Discussion 

Stoichiometry was evaluated in accordance with equation (1) taking into account the above 

plasma analysis results. Two lines had to be chosen for stoichiometry calculation. As explained in section 

(4.1), carbon line at 247 nm was the only neutral carbon line available on all the spectra recorded and was 

therefore automatically chosen. The Si line at 288.157 nm was selected for two reasons. It had a better 

signal-to-background ratio than the other detected transitions. Furthermore, its repeatability proved to be 

higher than the other recorded lines. Spectroscopic characteristics of these lines are reported in table 3. 

The strong transition probability of the aforementioned Si line makes it prone to self absorption. With the 
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aim of verifying whether it was subject to self absorption, a flow of nanoparticles containing only the Si 

element was produced and analyzed. The LIBS intensity of this Si line was studied as a function of 

nanoparticle concentration. To this end, the spectra were recorded with the above selected delay of 4.2 µs 

but with an extended gate width of 20 µs. A fast analysis of all the Si spectra did not reveal any signs of 

strong self absorption. No self-reversed lines were observed. Figure 8 shows a graph representing the 

288.157 nm Si line intensity evolution as a function of concentration. Its intensity proved to be linear 

within the concentration range investigated. This result points out that self absorption was virtually non-

existent under our experimental conditions. Self absorption of C line was assumed to be negligible as its 

transition probability was weaker than that of Si at 288.157 nm. These results account for the optically 

thin plasma hypothesis necessary for equation (1) to be applied.  

Plotting such graph also aimed at detecting possible saturation of the LIBS signal which may 

have occurred in case of incomplete nanoparticle vaporization within the plasma. Usually, the grain size 

of nanoparticles varies within a range of 20 to 100 nanometers when produced by laser pyrolysis. 

Carranza and Hahn demonstrated incomplete vaporization of micrometric-sized particles even for high 

laser irradiance and concluded the existence of an upper particle size of 2.1 µm beyond which 

vaporization was not completed [24]. In addition, possible depletion of nanometric-sized particles from 

the plasma core was also reported [25]. Previous experiments carried out in our laboratory at INERIS 

showed linear dependence of LIBS intensity on particle sizes ranging from 40 nm to 500 nm while 

irradiating NaCl particles under comparable experimental conditions. In the present work, the detected 

LIBS intensity showed a linear dependence both on concentration and particle size. 

Eventually, all the criteria necessary for proper use of equation (1) were fulfilled. Stoichiometry 

was calculated with a 4.2 µs time delay recorded spectra and a 2 µs gate width as stated in 4.2.4. The 

results obtained are reported in table 4 and are in good accordance with the known theoretical values. 

However, calculations performed with equation (1) suggest that stoichiometry determination can be 

strongly temperature dependent. This is evidenced by writing stoichiometry relative uncertainty 
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The first term in equation (5) is related to relative errors on line ratio measurements including 

implicitly different uncertainties such as spectra repeatability and potential self-absorption 
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underestimation. These experiments pointed out that repeatability increased with increasing of number of 

accumulated spectra, as often verified in LIBS experiments. However our experiments had to be carried 

out in the allotted time corresponding to the reactor availability. For this first laser pyrolysis reactor – 

LIBS coupling, temporally-resolved emission spectroscopy measurements were performed. These 

experiments carried out for different stoichiometry and concentration were time consuming and did not 

lead us to record spectra with a large number of accumulations. Spectra corresponding to the selected 

temporal window and recorded with a larger number of accumulations could have enhanced our results.  

One characteristic of the LIBS technique applied to particle analysis is the particle presence 

probability within the laser-induced plasma. For low micrometric-sized particle concentration values such 

as a few micrograms per cubic meters, it has been demonstrated that a particle hit (a particle vaporized 

within the plasma and leading to LIBS detection) could be modeled with a Poisson probability law [26]. 

Thus, the laser-induced plasma corresponding to one shot may be ignited without any particle of the 

analyte passing through the plasma volume. No spectroscopic signal is then recorded for that shot 

lowering thereby the signal-to-background ratio of the resulting spectrum and its repeatability. Under our 

experimental conditions, the concentrations were of the order of a few micrograms per cubic centimeters, 

that is to say, 106 times higher than the aforementioned low concentrations (Table l) with particle sizes 

ranging from 20 to 100 nm. An average particle number of more than one thousand was always present 

within the plasma volume assuring LIBS detection for each laser shot and justifying ensemble averaging 

(i.e. accumulation of LIBS spectra) [11]. Within the concentration range probed during our LIBS 

experiment, the discrete nature of particles did not occasion particle miss (absence of analyte particles of 

the plasma) improving thereby signal-to-background ratio and repeatability. In future experiments, 

depending on particle concentration, further investigations could be necessary for spectra optimization 

either by increasing the number of accumulated spectra (in accordance with the time resolution wanted 

for process monitoring) or by improving data processing.  

The second term of equation (5) evidences that stoichiometry relative uncertainty value strongly 

depends on a correct temperature determination and increases with increasing energy difference between 

the two upper state levels. The impact of the temperature uncertainty on stoichiometry determination is 

displayed on figure 9. This graph indicates that an error of around 1500 K in the temperature calculation 

induces a variation in stoichiometry determination of about 25 % (taking into account the variations of the 
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partition functions with temperature). Yet, an accurate determination of the plasma temperature remains 

difficult. The use of the Boltzmann’s plot method for temperature calculation implies that all the lines 

used be not self-absorbed. This condition is not always easily achieved, though it is necessary to avoid 

calculation errors. These results actually highlight the need for a reliable tool allowing plasma 

characteristics determination with a better accuracy than by using Boltzmann’s plot method or by 

measuring Stark broadening directly on a spectrum.  

On the basis that laser-induced plasmas generated at atmospheric pressure are very close to the 

LTE state, the spectra emitted during LIBS experiments could actually be simulated using a LTE model. 

By comparing recorded spectra with synthetic spectra, characteristics such as electronic temperature, 

electronic density, plasma composition and subsequently stoichiometry can be determined using a model 

including diverse functionalities such as self-absorption modeling [27,28]. A correct fit guarantees plasma 

characteristic determination with uncertainties lower than with any other methods. Such model could be 

of great interest for future and advanced experiments concerning nanoparticle process control using LIBS. 

As the nanoparticle sampling flow concentration passing through the analysis cell can be varied at will by 

designing the right bypass line, the best laser-plasma-particle coupling should be investigated to approach 

as close as possible of the LTE state. Thus, stoichiometry of composite nanoparticles containing more 

than two elements could be determined with the best accuracy.  

The results obtained in the course of our experiments point out the difficulty met when trying to 

obtain quantitative results without using calibration standards. In the framework of these experiments, a 

calibration free method was favored for this first attempt. The possibility of using a nanoparticle sampling 

flow as a reference for calibration is not ruled out. However, the method to be applied leading to the 

elaboration of a reliable nanoparticle sampling flow usable as a calibration standard remains to be 

determined.  

 

5. Conclusion 

Experiments aiming at demonstrating the feasibility of an on-line LIBS monitoring system allowing real 

time stoichiometry measurements during nanoparticle production by laser pyrolysis have been carried out. 

Part of the nanoparticle flow produced by the process was diverted through a flowing cell where the LIBS 

plasma was created. Time-resolved spectroscopic study of the laser-induced plasma was performed with 
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the aim of determining nanoparticle stoichiometry. Temporally-resolved electronic density and 

temperature measurements were obtained from Stark Broadening analysis and Boltzmann plot 

respectively. LTE validity was established and subsequently, stoichiometry was calculated using an 

equation relating line intensities to Boltzmann’s law. Stoichiometry values found were in good agreement 

with the expected values. However, stoichiometry calculation proved to be sensitive to the uncertainty 

related to electronic temperature determination. A deeper study of the laser / plasma / nanoparticle 

coupling combined with LTE modeling could greatly enhance these promising results.  
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Figure caption 

 

 

Figure 1. Laser pyrolysis reactor experimental set-up including the LIBS unit. 
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Figure 2. LIBS experimental set-up integrated into the laser pyrolysis process. 
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Figure 3. Spectrum recorded during vaporization of SiC2 nanoparticles within the laser-induced plasma 

(time delay of 4.2 µs and an ICCD gate width of 2 µs). The line on the left is C I at 247.86 nm. The six 

other lines correspond to Si I at, from left to right: 250.69 nm, 251.43 nm, 251.61 nm, 251.92 nm, 252.41 

nm and 252.85 nm.  
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Figure 4. Example of simulated and experimental profiles of Stark-Broadened Ar lines at 750.386 and 

751.465 nm used for electronic density measurements. 
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Figure 5. Temporal evolution of the electronic density during vaporization of SiC and SiC8 nanoparticles 

within the laser-induced plasma generated in the argon background gas. 
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Figure 6. Example of Boltzmann plot obtained using argon lines (spectra recorded for time delay of 4.2 

µs and gate width of 2µs) during SiC2 Nanoparticle vaporization by the laser-induced plasma generated in 

the argon background gas. 
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Figure 7. Temporal evolution of the electronic temperature during vaporization of SiC nanoparticles 

within the laser-induced plasma generated in the argon background gas. 
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Figure 8. Si (288.157 nm) line intensity evolution as a function of Si nanoparticle concentration.  
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Figure 9. Influence of a 10% error in temperature determination on calculated stoichiometry. 
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Table 1. Reactants and argon flow rates, pressure within the chamber and laser power utilized during SiCx 
nanoparticle synthesizing by laser pyrolysis. The theoretical nanoparticle-mass production values are 
indicated.  
 

Theoretical 
compound 

SiH4  
Flow rate 

(l/min) 

C2H2  
Flow rate 

(l/min) 

Ar 
Flow rate 

(l/min) 

Theoretical 
Production 

(g/h) 

Pressure 
(mbar) 

Laser  
Power (W) 

SiC 0,8 0,4 170 86 950 1000 

SiC2 0,4 0,4 170 56 950 1000 

SiC4 0,2 0,4 170 41 970 1000 

SiC8 0,1 0,4 170 33 970 1000 
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Table 2. Wavelengths , transition probabilities Aij 107, upper and lower level energies Ei and Ej and 
statistical weights of the upper states gi of the 17 argon lines selected for the Boltzmann plots. 
 

 (nm) Aij *107 (s-1) Ei (eV) Ej (eV) gi 

696,54 0,639 13,3279 11,5484 3 

706,72 0,38 13,3022 11,5484 5 

714,7 0,0625 13,2826 11,5484 3 

727,29 0,183 13,3279 11,6236 3 

738,39 0,847 13,3022 11,6236 5 

763,51 2,45 13,1718 11,5484 5 

794,81 1,86 13,2826 11,7232 3 

801,47 0,928 13,0949 11,5484 5 

810,36 2,5 13,1531 11,6236 3 

811,53 3,31 13,0757 11,5484 7 

826,45 1,53 13,3279 11,8281 3 

840,82 2,23 13,3022 11,8281 5 

842,46 2,15 13,0949 11,6236 5 

419,10 0,0539 14,6806 11,7232 5 

420,06 0,0967 14,4991 11,5484 7 

426,62 0,0312 14,5289 11,6236 5 

430,01 0,057 14,5061 11,6236 5 
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Table 3. Wavelengths , transition probabilities Aij 107, upper level energies Ei, lower level energies Ej, 
statistical weights of the upper states gi, of the Si and C selected lines for stoichiometry calculation. Z are 
the partition functions of Si and C in the neutral state calculated for temperature value T of 14800 K.  
 

Element  (nm) Aij *107 (s-1) Ei (eV) Ej (eV) gj Z  T (K) 

Si  288,16 18,9 5,082 0,780 3 16,87 14800 

C  247,85 3,4 7,684 2,684 3 11,51 14800 
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Table 4. Stoichiometry values calculated from equation (1). 

 

Compound Calculated 
Stoichiometry 

SiC 1.1 

SiC2 2.5 

SiC4 3.7 

SiC8 8.7 

 
 


