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Abstract

Standard statistical models for analyzing inter-individual variability in clinical phar-

macokinetics (non-linear mixed effects; hierarchical Bayesian) require individual data.

However, for environmental or occupational toxicants only aggregated data are usually

available, so toxicokinetic analyses typically ignore population variability. We propose

a hierarchical Bayesian approach to estimate inter-individual variability from the ob-

served mean and variance at each time point, using a bivariate normal (or lognormal)

approximation to their joint likelihood. Through analysis of both simulated data and

real toxicokinetic data from 1,3-butadiene exposures, we conclude that given informa-

tion on the form of the individual-level model, useful information on inter-individual

variability may be obtainable from aggregated data, but that additional sensitivity and

∗Weihsueh A. Chiu is Environmental Health Scientist, U.S. Environmental Protection Agency (EPA),
Washington, DC 20460, USA (email: chiu.weihsueh@epa.gov); Frédéric Y. Bois is Scientific Officer, Institut
National de l’Environnement Industriel et des Risques Unité de Toxicologie Expérimentale Parc Alata, BP2,
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identifiability checks are recommended.

Keywords: 1-3 butadiene; Bayesian; inter-individual variability; Markov chain Monte

Carlo simulation; population pharmacokinetics

1 INTRODUCTION

Population analyses of toxicokinetic data are designed to characterize inter-individual

variability in the parameters or predictions of models describing the absorption, distribu-

tion, metabolism, and excretion of toxicants in the body. While such analyses are standard

in pharmaceutical research (Sheiner, Rosenberg, and Melmon 1972; Sheiner 1984; Radine-

Poon 1985; Yuh et al. 1994; Wakefield, Smith, Racine-Poon, and Gelfand 1994; Wakefield

1996; FDA 1999), it has only been since the work of Bois et al. (1996a, b) and Gelman, Bois,

and Jiang (1996) that similar methods have been applied in environmental health sciences.

However, there is only a handful of published population toxicokinetic analyses (recent ex-

amples include Hack, Chiu, Zhao, and Clewell 2006; Marino et al. 2006; Yokley et al. 2006;

and Covington et al. 2007). Population analysis methods such as non-linear mixed effects

or hierarchical Bayesian modeling require individual-level data. However, individual data

from toxicokinetic studies (commonly performed in laboratory animals, but also sometimes

in humans) are often unavailable due to the common practice of summarizing data in the

form of average and SD (which are sufficient for some classical analyses).

Toxicokinetic analyses of older, often under-exploited, datasets therefore typically ignore

population variability because models are fit using reported means and standard errors from

multiple individuals, with those parameters interpreted as representing an “average individ-

ual.” The increasing use of physiologically-based toxicokinetic (PBTK) models, which have

many more parameters than classical pharmacokinetic models, has led to the additional prac-

tice of fixing “known” physiological variables and estimating the remaining chemical-specific

parameters either from in vitro measurements or by “fitting” to aggregated data. There are

several problems with such practices. First, except for the simplest models, the concept of
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“average” parameters is difficult to interpret because of the non-linear relationships between

model parameteres and predictions. Moreover, the general presumption that population

variability can be ignored in laboratory animal experiments because they are performed on

groups of in-bread, genetically similar strains is questionable. Such data still may show a

fairly wide range of kinetic response, especially evident in experiments that report single

data points for individual animals (e.g., Prout, Provan, and Green 1985). Furthermore,

there is typically a large amount of both uncertainty and variability in parameters in PBTK

models that are treated as “known,” and the selection of which parameters to fix and which

to fit is difficult, especially when combining information from various sources and multiple

datasets. Therefore, the practice of fitting to aggregate data in this setting can at the very

least underestimate overall uncertainty and may lead to inaccurate and biased estimates

(Racine-Poon and Smith 1990; Sheiner 1984; Sheiner and Ludden 1992; Woodruff and Bois

1993).

We demonstrate here that population inferences may still be made from aggregated data

if both the observed mean and variance at each time point are available and there is a priori

information about the model and variance structures. In particular, we propose that the

usual hierarchical Bayesian approach, briefly reviewed in Section 2, be extended by treating

individual data as missing (or latent) and marginalizing over it. As described in Section 3, we

approximate the corresponding (generally intractable) joint likelihood of the observed means

and variances with a multivariate normal (or lognormal) distribution having the correct first

and second-order moments. The form of the likelihood depends in part on the underlying

measurement model for the individual data and the assumed variance structure. We derive

approximations based on normal, proportional, and lognormal errors and a single level of

inter-individual variability, which are commonly used in toxicokinetic models. In Section

4, we present comparisons of analyses based on individual data using the full population

approach to analyses based on aggregated data using our proposed approximations for three

simulated data sets and one published human toxicokinetic dataset of controlled exposures

to 1,3-butadiene. We find in our examples that the aggregated analyses provide posterior
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predictions quite similar to individual analyses, albeit with greater posterior uncertainty, as

should be expected. In Section 5, we discuss our conclusion that substantial information on

inter-individual variability may remain in the aggregated data, and that such information

can be recovered through appropriate analyses. Given that some information is still lost

in data aggregation, we suggest that posterior analyses, including checking of model fit,

sensitivity, and parameter identifiability, are of great importance to increasing confidence in

conclusions drawn from analyses of aggregated data.

2 POPULATION MODELING OF

TOXICOKINETICS

As described in Gelman et al. (1996), population modeling of toxicokinetics involves set-

ting up a model in several stages. A nonlinear toxicokinetic model, with predictions denoted

f , describes the absorption, distribution, metabolism, and excretion of a compound and its

metabolites in the body. This model depends on several, usually known, parameters such

as measurement times t, exposure E, and measured covariates φ. Each subject i in a popu-

lation has a set of unknown parameters θi. A population model describes their distribution

in the population, and incorporates existing scientific knowledge about them through prior

distributions on the population mean µ and variance Σ2. Finally, a “measurement error”

model describes deviations ǫ (with variance σ2) between the data y and model predictions

f . This level of the hierarchical model typically also encompasses intraindividual variability

as well as model misspecification, but for notational convenience we refer to it here as “mea-

surement error.” All these components are illustrated graphically in the left part of Figure

1.

***Figure 1 about here.

The posterior distribution for the unknown parameters is obtained in the usual man-

ner by multiplying (A) the prior distribution for the population mean and variance and

the “measurement” error P (µ, Σ2|I)P (σ2|I), (B) the population distribution for the indi-
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vidual parameters P (θ|µ, Σ2, I), and (C) the likelihood P (y|θ, σ2, I), where for notational

convenience, we collapse the knowledge of f , φ, E, t, and n into prior information I:

P (θ, µ, Σ2, σ2|y, I) ∝ P (µ, Σ2|I)P (σ2|I)P (θ|µ, Σ2, I)P (y|θ, σ2, I) (1)

Here, each individual’s parameters θi have the same sampling distribution (i.e., they are iid),

so their joint prior distribution is

P (θ|µ, Σ2, I) =
n

∏

i=1

P (θi|µ, Σ2, I). (2)

We consider three different measurement models for the likelihood function, normal errors

(Model I), proportional errors (Model II), and lognormal errors (Model III), as shown in

Table 1. Note that Models II and III are heteroscedastic, a common concern for toxicokinetic

data. Different types of measurements j = 1 . . . m may have different errors, but errors are

otherwise assumed to be iid. Since the individuals are treated as independent given θ1...n,

the total likelihood function is simply

P (y|θ, σ2, I) =
n

∏

i=1

m
∏

j=1

Nj
∏

k=1

P (yijk|θi, σ
2
j , tjk) (3)

where n is the number of individuals and m is the number of different types of measurements,

Nj is the number of measurements of type j, and tjk are the times at which measurements

of type j were made. Note we have assumed that the individuals each have the same

experimental design, as would be expected if data were to be aggregated.

3 ANALYSIS OF AGGREGATED DATA

If individual data have been aggregated, and one only has the number of individuals n

and the sample mean mjk and variance s2
jk of individual measurements at time-point k, then

one must modify the statistical model used. The individual data yijk are considered missing

or latent, and therefore treated as parameters rather than data in a Bayesian context. Thus,

the standard data model becomes part of the population model, and a new data model for

m and s2 is needed. One therefore has a posterior distribution given by

P (θ, σ2, µ, Σ2, y|m, s2, I) ∝ P (θ|µ, Σ2, I)P (µ, Σ2|I)P (σ2|I)P (y|θ, σ2, I)P (m, s2|y, I). (4)
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The additional term P (m, s2|y, I) is formally a δ-function (or 0-1 indicator) specifying the

arithmetic relationship between the observed values yijk and their mean mjk and variance

s2
jk. This full statistical model is illustrated in the middle of Figure 1. A possible treatment

of the problem would be to consider the yijk as latent variables and sample (i.e., impute)

them as the other estimands, through Monte Carlo techniques, for example. The logical

relationship between yijk and (mjk, s
2
jk) would complicate such a treatment for continuous

measures (see Marjoram, Militor, Plagnol, and Taveré 2003 for discussion of such methods).

The approach we take is to marginalize over the individual measured values yijk, which here

may be considered nuisance parameters, prior to sampling via Monte Carlo. The posterior

distribution we are aiming for, then, has the form

P (θ, σ2, µ, Σ2|m, s2, I) ∝ P (θ|µ, Σ2, I)P (µ, Σ2|I)P (σ2|I)P (m, s2|θ, σ2, I), (5)

with

P (m, s2|θ, σ2, I) =
∏

j,k

P (mjk, s
2
jk|θ, σ2

j , I) (6)

=
∏

j,k

∫

P (mjk, s
2
j |y1jk . . . ynjk)

∏

i

P (yijk|θi, σ
2
j , I)dyijk (7)

This marginalization is illustrated graphically on the right part of Figure 1. Because the

likelihood function P (mjk, s
2
j |θ, σ2

j , I) is conditional on θ, it is independent of the popula-

tion model for inter-individual variability and only depends on the “measurement” model.

Below, we present approximations to P (m, s2|θ, σ2, I) for the different measurement models

considered above. Note that from here on we generally suppress the indices j, k for clarity,

and concentrate on approximations for the integral in equation (7).

3.1 Likelihood Functions for Various Measurement Models

Our general approach is to approximate (for fixed observation type j and time-point tk) the

joint distribution of m and s2 (m and m2 ≡ (m2 + s2) for Model III), conditional on {θi}

(i = 1 . . . n), with a bivariate normal (lognormal for Model III) distribution by matching

the first and second order moments. In particular, we require that the distributions match
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in terms of E[m], E[m2] − E[m]2, E[s2], E[s4] − E[s2]2, and E[ms2] − E[m]E[s2], where E

is the expectation conditional on the values of {θi}. The results of these calculations are

summarized in Table 1.

Table 1 about here.

The moment matching derivations for Models I and II are straight-forward, though te-

dious (and available as supplementary material online). Note that in both cases, the marginal

distributions for the observed mean m are exactly normal, as they are weighted sums of nor-

mal deviates. The covariance between m and s2 is zero for Model I, and non-zero for Model

II.

The derivation for lognormal errors, Model III, merits additional discussion. In this

case, the mean, given by m = (1/n)
∑

fi exp(ǫi), has no simple closed form solution for

its distribution (see Barakat 1976 and Leipnik 1991 for series approaches to calculating the

characteristic function). Several approaches may be taken to approximate it. For large n

and/or small σ2, the central limit theorem can be invoked to approximate the distribution

for m by a normal distribution. For many applications, however, n is quite small (∼ 4), and

Barakat (1976) shows that the coefficient of skewness of the sum distribution decays only

as ∼ n−1/2. Moreover, m and
√

s2 are often of the same order, so it may be important to

incorporate the fact that m must be positive. For these reasons, in many telecommunications

and engineering applications, the sum of lognormal deviates is commonly approximated by

a lognormal distribution by matching moments (e.g., Fenton 1960). Simulations appear to

indicate that this approximation is useful for values up to σ2 ∼ 1 (Fenton 1960; Schwartz

and Yeh 1982), and we adopt this approximation here.

So as to enable use of the same approach, we take as our second “observed” value not

the variance s2 but the second moment m2 ≡ (1/n)
∑

f2
i exp(2ǫi) = s2 + m2, as it is also

a sum of lognormal deviates. Thus, we also approximate its distribution by a lognormal

distribution by matching moments, noting that it is the same form as m with σ2 → 4σ2 and

fi → f2
i . From the work cited above, this means that the lognormal approximation for m2

is only useful for 4σ2 ≤ 1. Therefore, in general the approximate likelihood for (m,m2) is
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only accurate if σ ≤ 0.5.

The final step, then, is to define the correlation coefficient r of the bivariate lognormal

distribution. We use the same approach as for Models I and II, matching the product moment

E[mm2] (equivalent to matching the central moment because we have already matched E[m]

and E[m2]). We have investigated this approximation in a limited number of simulations for

values of n ≤ 10 and values of σ ≤ 0.5, and have found it to be acceptable as long as the fi has

a relatively small coefficient of variation. If fi are too widely dispersed (e.g., VAR[ln f ] > 1),

then the above formula can sometimes give a value of r > 1. In this case, however, we have

found that using the above formula, but taking σ → 0 (i.e., the limit in which measurement

error is negligible relative to inter-individual variability), so that r → E[f3]/
√

E[f2]E[f4],

gives reasonable results. We take the minimum value of r from the above two formulae as

the one we use in our distribution for m and m2, as shown in Table 1. We find that this

approach sometimes slightly underestimates r by up to a few percent, but ensures that r ≤ 1.

This constraint on r should be checked in posterior simulations.

3.2 Additional Issues for Consideration

3.2.1 Sufficiency and Identifiability

For most non-linear models, there will undoubtedly be some loss of information in data aggre-

gation, so there may be concerns about whether there is still sufficient information to ensure

parameter identifiability in the toxicokinetic and population models. However, even with

individual data, a toxicokinetic model may not be fully identifiable (e.g., the estimation of

decay times of a mixture of exponentials is ill-conditioned, Acton 1970), so this problem is not

unique to aggregated data. At the very least, some a priori information on the system being

analyzed should exist to motivate the formulation of the model and, preferably, informative

prior distributions for its parameters. For instance, in their analysis of tetrachloroethylene

toxicokinetics, Gelman et al. (1996) remarked that both the physiological model and prior

distributions were necessary to ensure identifiability. At best, data from other experiments
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where data were not aggregated could be used to establish the appropriate model form. In

toxicokinetics, if one’s goal is to characterize population variability, then one presumably

already has sufficient information to justify the structure of the individual-level model. So

we focus in particular on parameter identifiability rather than model discrimination.

For non-linear models, these issues are necessarily case-specific, and it may not be possi-

ble to know whether parameter identifiability is a problem prior to performing an analysis.

However, posterior and sensitivity analyses can be done to check that the population pa-

rameters are identifiable given the data. The first evidence for non-sufficiency would be if

the priors and posterior distributions are identical. If the posteriors are narrower, then the

data add some information. A scalar measure τ of the “overlap” between marginal prior and

posterior distributions was proposed by Garrett and Zeger (2000) for latent class models,

and is adapted here for more general use. In particular, for a parameter θ, data y, and prior

information I, prior distribution P (θ|I), and posterior distribution P (θ|y, I), the “overlap

diagnostic” is defined as

τ =
∫

min {P (θ|I), P (θ|y, I)} dθ. (8)

Values of τ near unity (i.e., 100% overlap) indicate weak identifiability from the data, whereas

lower values (Garrett and Zeger 2000 proposed 0.35 as a heuristic threshold) indicated strong

identifiability from the data.

Additionally, it can be determined whether parameters are uniquely identifiable. For

example, in the case of a model yi(t) = (αi + βi)t + ǫit, the parameters αi and βi (and

their corresponding population mean and variance) are not uniquely identifiable without

informative priors, whether one has individual data or aggregated data. If one does not have

informative priors, then this can be detected a posteriori by examining sensitivity of the

results to different diffuse priors, and more directly through examining correlations in the

posterior samples. While visual inspection of the posterior correlation matrix can be useful

in simple cases such as this, in more realistic applications in which more than two parameters

may be involved simultaneously, principal component analysis (PCA) should be a useful tool.
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In particular, performing PCA on the posterior samples, and then comparing the posterior

distributions of the principal components with their priors (i.e., applying the same centering,

scaling, and rotation to samples from their joint prior distribution) should identify any non-

diagonal components which are not identifiable. This should also be applicable to cases such

as yi(t) = θi +ǫit, where variance contributions from different levels of the hierarchical model

are indistinguishable after data aggregation.

3.2.2 Choice of Measurement Model

In standard population analyses, the choice of measurement model is influenced only by

the underlying hypothesis for how the individual data deviate from model predictions. In

our case, how the data are aggregated also plays a role. For most toxicokinetic data, a

lognormal measurement model has been traditionally assumed for individual data points.

One could thus either use Model I by transforming y → ln y, or use Model III. A priori,

Model I would be preferable because it is simpler. However, one could only use this model if

the aggregation was done on the transformed data — e.g., the reported values are geometric

mean and standard deviation. Typically, it is the arithmetic mean and standard deviation

that are reported, so that model III would be the most appropriate. Unfortunately, model

III is also the least robust of the models because of the requirement for σ2 ≤ 0.5 and the

possible lack of stability of the derived correlation coefficient. Model II then is a more robust

alternative approximation that still allows for errors to be proportional to the measured value.

On a practical matter, data are probably most useful in a regime where proportional normal

errors (Model II) and lognormal errors (Model III) are not easily distinguishable. Moreover,

the measurement model also encompasses model misspecification, and a value of σ > 0.5

(i.e., a > 50% error) may be reason to rethink the model.
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3.2.3 Model Checking and Model Choice

As with standard population analyses, model checking is important here. In addition to the

identifiability checks described above, the most basic check is whether the model is consistent

with the data. In the standard population analysis, a typical method to perform this check is

to compare simulated (replicated) data yi,rep with the observed data yi,obs (Gelman, Carlin,

Stern, and Rubin 2003, chap. 6). Analyses of aggregated data are no different except that

the quantities being compared are (m, s2)rep and (m, s2)obs, as in the examples we give below.

One important limitation of aggregated analyses, however, is that the structural assump-

tions in the population model P (θ|µΣ2) and the measurement model P (y|θ, σ2), which are

not easy to check with individual data, are even more difficult to validate with only ag-

gregated data. Typical techniques for assessing these assumptions include both posterior

simulations as well as sensitivity analyses. For aggregated analyses, posterior simulation is

of somewhat limited usefulness when checking structural assumptions because of the addi-

tional layer of latency. Sensitivity analyses take on greater importance. We illustrate this

below by considering all three measurement models in our analyses.

On the related issue of model choice, there are a large number of statistical methods

for model selection in both a frequentist (e.g., log-likelihood ratio test, Akaike information

criterion) and Bayesian context (e.g., Bayes factors, Bayesian information criterion). These

methods may be less reliable with only aggregated data. Fortunately, the formulation of

toxicokinetic models is motivated primarily by a priori biological and chemical information

rather than statistical measures.

In checking and choosing models, it is also important to make a distinction between the

“statistical” and “practical” significance of model errors. That is, because models such as

those used in toxicokinetics can never be thought of as strictly “true,” statistical lack of fit

may or may not have an impact on the substantive inferences for which the model is used.

Thus, the use of the model should be kept in mind when assessing either the consistency

between model predictions and data or the impact of different model assumptions.
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4 APPLICATION TO DATA ON 1,3-BUTADIENE

We first performed a number of simulations with a simple model and simulated data,

as summarized in Table 2. These simulations covered all three measurement models. We

generated simulated data and compared full population analysis of the individual data with

analyses of the same data aggregated. Computations were performed using WinBUGS ver-

sion 1.4 and MCSim (Version 5.0.0, Bois, Maszle, Revzan, Tillier, and Yuan 2005). In each

case, the results of the analysis of aggregated data were quite consistent with the results of

the full population analysis as well as with the underlying “true” values from which the data

were generated. This offered support for the accuracy of the approach developed here.

***Table 2 about here.

4.1 Butadiene data and model

We then applied our aggregation model to actual toxicokinetic data. The data and model

are described in detail in Bois, Smith, Gelman, Chang, and Smith (1999), and are sum-

marized briefly here. Eight human volunteers were recruited and tested at National Cheng

Kung University in Taiwan. The tests were conducted, under informed consent, with an

Institutional Review Board-approved human subjects protocol. They were exposed to an

ambient concentration Cin(t) of five ppm of 1,3-butadiene for two hours and then zero there-

after. This exposure was the minimum that could be precisely measured, and was well below

Taiwan’s allowable occupational exposure of 10 ppm per eight hour work day for a work-

ing lifetime. For each individual, measurements of body weight (BDW ), minute-ventilation

rate Kin, and blood-air partition coefficients Pba were made along with exhaled breath mea-

surements Cex(tk) at a series of times tk from the beginning of exposure to about one hour

post-exposure. The full dataset for Cex(tk) is displayed in all three panels of Figure 2.

***Figure 2 about here.

The toxicokinetic model was a standard two-compartment model, with a central (volume

Vc) and peripheral compartment (volume Vp) governed by the following differential equations
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for the amount of 1,3-butadiene in each respective compartment Qc(t) and Qp(t):

Q̇c(t) = KinCin(t) +
KcpQp(t)

PpcVp

−
(

Kcp +
Kin

Pca

)

Qc(t)

Vc

− KmetQc(t) (9)

Q̇p(t) = Kcp
Qc(t)

Vc

− KcpQp(t)

PpcVp

, (10)

where, in addition to the parameters defined above, Pca is the central-to-air partition co-

efficient (assumed to be the measured blood-air partition coefficient Pba); Kcp is the rate

constant for distribution from central to peripheral compartments; Ppc is the peripheral to

central partition coefficient; and Kmet is the metabolic rate constant. The measurement of

covariates BDW , Kin, and Pba greatly improves parameter identifiability in this model.

The exhaled concentration at observed time tk is given by

Cex(tk) =
0.7 Qc(tk)

PcaVc

+ 0.3 Cin(tk), (11)

where a physiological dead space of 30% is assumed. Because the product PpcVp is not

separable, it is treated as a single parameter to ensure identifiability. In addition, the central

volume and the minute-volume are assumed to follow the scaling relations

Vc = sc Vc BDW (12)

Kin = sc Kin BDW 0.7, (13)

so the sc Vc and sc Kin are the actual parameters in the model. Finally, one of the important

uses of the model is the prediction of the amount metabolized AMET, which is given by

AMET =
∫

KmetQc(t) dt. The characterization of the uncertainty and variability in dose

metrics such as this is important for making inferences about the population distribution of

risks from exposure.

In the population model, all the individual-level parameters are assumed to be lognor-

mally distributed with geometric mean exp(µ) and log-variance parameter Σ2. Two modifi-

cations from the Bois et al. (1999) full population analysis were made to allow comparison

between analyses of individual and aggregated data. First, population body weight param-

eters were estimated as part of the model. The population model was lognormal, but the
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likelihood function was assumed to be normal with a measurement standard deviation of

0.25 kg. Second, only time points for which measurements were available in all 8 individuals

were included. Although it is possible to include the missing data points in the model, it

adds a level of complexity that obscures the point of this comparison, which is to compare

full population analysis with an analysis using only aggregated data.

To summarize, each individual i has seven parameters θi = (sc Vc, Kcp, PpcVp, Kmet, Pca,

sc Kin, BDW )i and four types of observations yi = (Pba,obs, Kin,obs, Cex,obs(tk), BDWobs)i.

All errors were assumed lognormal except for BDW , for which errors were assumed to be

normal:

Pba,obs = Pca exp(ǫPca
) (14)

Kin,obs = Kin exp(ǫKin
) (15)

Cex,obs(tk) = Cex(tk) exp(ǫCex
) (16)

BDWobs = BDW + ǫBDW (17)

where in the middle two cases, the model predictions are given by equations (13) and (11),

respectively, and ǫPca
∼ N(0, log 1.17), ǫKin

∼ N(0, log 1.02), ǫCex
∼ N(0, log GSDex), and

ǫBDW ∼ N(0, 0.25 kg) (the first two were based on replicate samples).

Data aggregation was performed using log-transformed measurements (thus using Error

Model I) as well as un-transformed measurements (thus using Error Models II and III), the

last of which are also shown in the left panel of Figure 2. Simulations for all cases were

performed using the MCSim software. To ensure consistency, the original MCSim code used

in Bois et al. (1999) was obtained and modified only where needed.

Prior distributions were the same as in Bois et al. (1999), except for the body weight

parameters, which are new. The prior mean body weight was assigned a uniform distribution

with min and max equal to the min and max measured body weight. The prior variance was

assigned the inverse Gamma distribution with shape parameter of unity and scale parameter

corresponding to a 20% coefficient of variation. All priors are listed in Table 3. As was

done in Bois et al. (1999), 50,000 iterations performed for two independent chains in each
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case. The first 10,000 iterations were discarded, and only every 10 iterations were stored

for analysis. Convergence was monitored through the method of Gelman and Rubin (1992),

and potential scale reduction factors were ≤ 1.03 in the case of individual data, and ≤ 1.01

in the aggregated data cases.

4.2 Comparisons between full population and aggregated analyses

***Figure 3 and Table 3 about here.

Table 3 and Figure 3 summarize the statistical results for both full population and ag-

gregated analyses. There is substantial agreement between the different analyses, as shown

visually in Figure 3. Posterior estimates of all population parameters substantially overlap

for all parameters except for the “measurement” error, which is signficantly larger in the

aggregated analyses (discussed below). While difficult to see in the Figure due to the loga-

rithmic scale, estimates of the population mean parameters (µ), summarized in Table 3, are

not greatly affected by the use of aggregated data, both in terms location and scale. In most

cases, the population variances (expressed as geometric standard deviations exp Σ in Table

3) are only slightly affected as well, with 95% confidence intervals substantially overlapping

among the four analyses. The uncertainties in the population variance parameters exp Σ,

however, are consistently greater in the aggregated analyses. Because the inverse-Gamma

priors on the population variances Σ2 have shape parameter of unity, they have infinite dis-

persion. Thus, greater posterior uncertainty generally leads to higher central estimates and

upper confidence limits. This is reflected in the results, particularly for parameters sc Vc

and sc Kin. It is clear that in these cases, some information was lost in the aggregation

process. The parameter for “measurement” error GSDex was slightly greater in the aggre-

gated analyses. Bois et al. (1999) reported that the analytical errors were estimated to be

about 7%, so this increased “measurement” error reflects additional model error (e.g., due

to the approximations necessary to derive the likelihood functions) and/or intraindividual

variability. Table 3 also shows the posterior uncertainty in the population variability in the
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dose metric AMET for the 8 individuals. The posterior predictions were very similar among

the full population and aggregated analyses, although as with the population parameters,

the uncertainty from the aggregated analyses is slightly greater. Overall, the results of the

population analysis based on aggregated data, using the statistical models developed above,

are consistent (albeit with greater overall uncertainty) with those based on individual data.

4.3 Parameter identifiability

Checks for non-identifiability were conducted on the full population analysis as well as each

aggregated analysis, concentrating on the 15 population parameters (mean and variance for

each of the 7 model parameters, plus residual “measurement” variance). Given the narrowing

of all of these distributions from prior to posterior, one would not expect any parameters to be

completely unidentifiable. Indeed, for population means, values for the overlap diagnostic

τ were ≤ 0.2 except for the metabolic rate constant Kmet (τ ∼ 0.5) and the mean body

weight (τ ∼ 0.6). Moreover, the difference between τ in individual and aggregated analyses

was ≤ 0.05, indicating little information loss for estimated population means. Population

variances were not as well identified, with τ ≥ 0.4. In addition, the differences between

individual and aggregated analyses were greater. The largest changes in overlap were in the

estimated variances of Vc (τ = 0.55 for the individual analysis and τ = 0.83 − 0.90 for the

aggregated analyses) and Ppc (τ = 0.46 for the individual analysis and τ = 0.61−0.64 for the

aggregated analyses). For the other variance parameters, the overlap diagnostic τ changed

by ∼ 0.1.

Further checks examined whether some parameter combinations are only weakly con-

strained by the data. As a visual check, the correlation matrix was calculated with mean

parameters log-transformed (this is more “natural” since the population model and most

of the likelihoods are lognormal) and variability parameters transformed, if necessary, to

variances (e.g., GSD → (ln GSD)2). All non-diagonal correlation coefficients for the popu-

lation parameters were in the interval (-0.4,0.6); of the 15× 14/2 = 105 unique non-diagonal
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elements, only 8 were outside the interval [-0.2,0.2]. Thus, there were some correlations, but

none were extremely strong.

PCA was performed on the posteriors with the R statistical package, with centering

to zero mean and scaling to unit variance (i.e., equivalent to determining the eigenvectors

of the correlation matrix). Each analysis (full population and the three aggregated) had

a slightly different rotation matrix, as should be expected for a non-linear model and the

approximate likelihood functions used. Priors for each set of principal components were

then generated by applying the same transformations to random samples from the joint

prior distribution. All prior principal component [2.5%,97.5%] confidence intervals included

zero (which, by definition, is the posterior mean of the principal components), so there is

no conflict between priors and posteriors even after transformation. Moreover, the posterior

confidence intervals were wholly contained within the prior confidence intervals, with the

prior intervals substantially wider (i.e., by at least 5.9-fold). Thus, we conclude that there

are no substantial parameter identifiability problems.

4.4 Checking Model Fit

Inspection of Figure 2 (middle and right panel) of the scatter in the data points relative

to the scatter of the predictions suggests that full population and aggregated analyses give

similar inter-individual variance in their predictions. Additional checks using the full pos-

terior distribution of predictions for the measured mean and variance for the exhaled air

concentration Cex showed good qualitative consistency between the model predictions and

the underlying (aggregated) data (not shown). However, the scatter during the period of

exposure (t = 0−120 minutes) appears underestimated, perhaps due to intraindividual vari-

ability, which here was not modeled separately but lumped with “measurement” error. This

feature also appears in the full population analysis, as can be seen in the middle panel of

Figure 2. We also note that, for Model III, the posterior range of the “measurement” error

variance σ < 0.5, as required by our approximation for the likelihood function. In addition,
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for Model III, we checked the approximation for the correlation parameter r, and found that

in no case did the moment-matching formula give r > 1, so the σ → 0 approximation was

never used.

Sensitivity analysis is illustrated through comparison of the results from different error

models. Summary statistics are quite similar, with the exception of the variance of sc Vc,

which had greater uncertainty in Model II. In particular, the posterior estimates for the dose

metric AMET were remarkably consistent. Furthermore, graphs of the posterior distributions

as well as the comparisons between data and model predictions showed little sensitivity to

different error models (not shown).

Finally, we note that checks for parameter identifiability (§4.3), model fit and sensitivity

analyses are not unique to the analysis of aggregated data. They could (and should, in

our opinion) be more widely applied to standard population analyses as well. For instance,

parameter identifiability is usually not checked in any formal manner. Model fit is typically

checked only through scatter plots of data and a single posterior prediction (e.g., using a

“random sample” or using population mean parameters), as is shown in Figure 2. As reported

above, we performed additional checks using the full posterior distribution. Checking of the

assumed “measurement” error model, as was done here as part of the sensitivity analyses, is

rarely done.

5 DISCUSSION

Through the use of some conceptually simple approximations, we have developed like-

lihood functions for the observed sample mean and variance of individual measurements,

given a hierarchical population model. Our results illustrate that individual data, while

preferable, are not necessarily essential to analyze population variability in a hierarchical

Bayesian framework. In the cases we analyzed, the resulting posterior distributions between

analysis of individual and aggregated data are very similar. This may not be too surprising

with very simple normal models. Yet, we have found in our examples that the mean and
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variance are nearly sufficient even with a nonlinear model. However, it is important to check

model fit, sensitivity to the likelihood approximation used, and parameter identifiability. For

this last check, we propose principal component analysis as a broadly applicable method.

We have not yet applied our approach to more complex (e.g., PBTK) models, but results

from the butadiene example are encouraging.

There are several important limitations to our approach, some of which are fundamental

and some more practical. First of all, in the examples we have examined, the assumption

has been made (by design for the simulated data and checked in the case of the butadiene

analysis) that other sources of variability (intraindividual variability, measurement error,

model uncertainty, for example) are small compared to inter-individual variability. If this

assumption were not true, the analysis may not be able to disentangle inter- and intra-

individual variability. However, this can be checked a posteriori with the identifiability

checks described above. In addition, structural assumptions, which are not easy to test

even with individual data, are even more difficult to check with aggregated data, so use of

aggregated data for statistical model discrimination is not recommended. Fortunately, for

toxicokinetic models there is usually a priori information on model formulation. Finally,

one should always consider evaluations of the performance of aggregated analyses in the

context of what the data are to be used for, as a mild loss of information or parameter

non-identifiability may not necessarily have a significant impact on posterior inferences of

interest. In our example with 1,3-butadiene, the predicted mean and variance for the dose

metric AMET differed very little among the different analysis, even though some information

on population variability was lost.

On a practical level, the analysis of aggregated data is more computationally burdensome

than if individual data were available. This is due to the more complicated likelihoods, par-

ticularly for Models II and III where there is covariance, and possibly slower convergence.

For instance, on an Intel Pentium 4 2.8 GHz processor running Windows XP with 512 MB

of RAM, two chains of length 50,000 run in MCSim took about 1 hour to complete for the

individual data for butadiene, and about 4.5 hours for the aggregated data using Model
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III. While these times are not long, more complicated models and data could substantially

increase the computation time and the chain length necessary for convergence. These prac-

tical limitations could be alleviated by either more efficient MCMC algorithms or faster

computing power than we have used here.

Ideally, of course, individual data would always be available for analysis, and it is sound

practice to use all such data. It should not be inferred from our analysis that summary data

should be used when individual data are available, as data aggregation always entails a degree

of information loss. However, especially in a toxicological/environmental health setting where

data are often gathered from multiple, usually historical, sources, the original data may be

unavailable. The effort, then, should be to maximize the use of the available information,

particular in the case of human data where unnecessary exposure to toxicants should be

minimized. Typically, no attempt is made to extract population variability information from

aggregated data, perhaps because it is presumed to be unimportant or to have been lost in the

aggregation process. Our analysis shows this information is not necessarily completely lost

— that when both the mean and variance are reported, significant information on population

variability may remain. We have presented here an example of application to the analysis

of toxicokinetic data, but aggregation of data for publication has been pervasive in biology,

and occasions to test the approach we propose should be plentiful. For example, in cancer

bioassays, groups of animals are exposed to predetermined doses of a carcinogen and the onset

of tumors is observed. Each animal is expected to react differently to the exposure. Such

inter-individual variability can be studied if time-to-event reporting of tumors is available.

However, most of the time (e.g. the carcinogenic potency database of Lois Gold at Berkeley,

Gold, Manley, Slone, and Rohrbach 1999) only the number of animals bearing tumors at

the end of the experiment is kept and analyzed with binomial or Poisson regressions. A

better understanding of the variabilities and uncertainties involved in such experiments would

probably benefit society as a whole.
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Table 1: Approximate Likelihood Functions for Aggregated Data

Error Model Approximate Likelihood Function

I: yi ∼ N(fi, σ) (m, s2) ∼ N(µm, σm, µs2 , σs2 , r)

µm = E[f ]

σ2
m = σ2/n

µs2 = E[f 2] − E[f ]2 + (n − 1)σ2
m

σ2
s2 = 4σ2

m {µs2 − (n − 1)σ2
m/2}

r = 0

II: yi ∼ N(fi, fiσ) (m, s2) ∼ N(µm, σm, µs2 , σs2 , r)

µm = E[f ]

σ2
m = E[f2]σ2/n

µs2 = E[f 2] − E[f ]2 + (n − 1)σ2
m

σ2
s2 = 4σ2 (E[f4] − 2E[f3]E[f ] + E[f2]E[f ]2) /n

+2σ4 {(n − 2)E[f 4] + E[f2]2} /n2

r = 2σ2 (E[f 3] − E[f 2]E[f ]) /
(

n
√

σ2
mσ2

s2

)

III: ln yi ∼ N(ln fi, σ) (ln m, ln m2) ∼ N(µm, σm, µm2
, σm2

, r)

µm = ln E[f ] + (σ2 − σ2
m)/2

σ2
m = ln{1 + (exp σ2 − 1)E[f 2]/(E[f ]2n)}

µm2
= ln E[f 2] + (4σ2 − σ2

m2
)/2

σ2
m2

= ln{1 + (exp 4σ2 − 1)E[f4]/(E[f2]2n)}

r = min
[

E[f3]/
√

E[f2]E[f4] ,

ln{1 + (exp 2σ2 − 1)E[f3]/(E[f2]E[f ]n)}/
√

σ2
mσ2

m2

]

Note: fi ≡ f(θi) and E[f q] ≡ ∑n
i=1 f q

i /n
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Table 2: Comparison of Individual and Aggregated Analyses of Simulated Data. The model

is f1 = exp(−κ1t) and f2 = (1 − f1) exp(−κ2t), with the population distributions of κ1,2

given by ln κ1,2 ∼ N(µ1,2, Σ1,2), and measurement error models y1,2 ∼ N(f1,2, σ1,2), y1,2 ∼

N(f1,2, f1,2σ1,2), ln y1,2 ∼ N(ln f1,2, σ1,2), for error models I, II, and III, respectively. Prior

distributions are µ1,2 ∼ N(0, 2), Σ2
1,2 ∼∼ InvΓ(1, 0.01), and σ2

1,2 ∼∼ InvΓ(1, 0.01). Posterior

values are median97.5%
2.5% , based on 5 chains, each of length 11,000, with the last 7000 for

inference. Simulated data is cross-sectional, with 8 individuals at each of N = 6 time points.

Similar results (not shown) are obtained from longitudinal data (N = 6, n = 8).

Error Parameter

Model Analysis µ1 exp Σ1 exp σ1 µ2 exp Σ2 exp σ2

All True Value: 0.50 1.28 1.064 −0.50 1.13 1.064

All Sample Value: 0.49 1.26 1.068 −0.52 1.13 1.064

I Individual: 0.490.57
0.43 1.251.32

1.2 1.0721.12
1.047 −0.53−0.49

−0.57 1.11.14
1.07 1.0741.118

1.047

Aggregate: 0.490.56
0.42 1.261.33

1.21 1.0681.121
1.042 −0.53−0.49

−0.56 1.111.15
1.08 1.0711.127

1.044

II Individual: 0.490.53
0.43 1.251.29

1.2 1.0711.115
1.046 −0.53−0.5

−0.57 1.111.13
1.08 1.0711.035

1.044

Aggregate: 0.480.54
0.42 1.231.3

1.18 1.071.127
1.043 −0.53−0.49

−0.57 1.111.16
1.08 1.0691.121

1.043

III: Individual: 0.490.57
0.43 1.251.32

1.2 1.0721.12
1.047 −0.53−0.49

−0.57 1.11.14
1.07 1.0741.118

1.047

Aggregate: 0.480.54
0.42 1.231.3

1.18 1.071.129
1.043 −0.53−0.48

−0.57 1.111.16
1.08 1.0681.117

1.043
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Figure 1: Graphical representation of population statistical model describing dependence

relationships between variables. Square nodes are known or measured quantities, circle nodes

are unknown or unobserved, solid arrows indicate a stochastic dependence, and dashed arrows

indicate a logical (functional) dependence. The inverted triangle f represents the nonlinear

pharmacokinetic model prediction. Individuals are labeled by the index i. It should be

noted that all of the nodes may have additional dimensions in addition to i (e.g., multiple

time points, tissues). The left model represents the situation where individual data yi are

available. Aggregation of data leads to the middle model, where only m, s2, and n are

available (note yi is still part of the model, but has changed from a square node, denoting

a measured quantity, to a circle node, indicating an unobserved quantity). Marginalization

over yi leads to the model on the right, which is used in our analyses. Approximations for

the results of this marginalization for various measurement models are described in the text.
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Table 3: Comparison of Individual and Aggregated Analyses of 1,3-Butadiene Data. Each

pharmacokinetic model parameter has an associated population mean µ and variance Σ2.

Individual analyses used error model III (Bois et al. 1999). Aggregated analyses for error

model I used log-transformed measurements; those for error models II and III used un-

transformed measurements. Prior distributions on µ and Σ2 are specified below, as are the

posterior median97.5%
2.5% on µ and exp Σ based on two independent chains of 50,000 iterations,

thinned by 10, with the first 10,000 iterations discarded. For the prediction AMET, GM8 and

GSD8 are the geometric mean and geometric standard deviation of 8 individuals, respectively.

Parameter or Priors (µ, Σ2) Posteriors (µ, exp Σ) from Analyses:

Prediction Individual Model I Model II Model III

sc Vc: µ Unif(0.01, 0.5) 0.06370.0772
0.0533 0.06540.084

0.0517 0.06820.0928
0.0517 0.06650.086

0.0526

sc Vc: Σ2 InvΓ(1, 0.039) 1.161.33
1.09 1.211.62

1.1 1.281.97
1.11 1.221.65

1.1

Kcp: µ Unif(0.5, 5) 1.091.32
0.919 1.121.39

0.923 1.131.39
0.934 1.131.4

0.925

Kcp: Σ2 InvΓ(1, 0.039) 1.161.34
1.09 1.181.4

1.1 1.191.41
1.1 1.181.4

1.1

PpcVp: µ Unif(10, 100) 27.933.2
23.9 28.835.3

23.8 29.235.1
24.2 29.235.7

24.1

PpcVp: Σ2 InvΓ(1, 0.039) 1.141.28
1.08 1.171.38

1.09 1.181.39
1.1 1.181.38

1.1

Kmet: µ Unif(0.05, 0.5) 0.2240.346
0.144 0.230.37

0.136 0.2280.37
0.137 0.230.368

0.136

Kmet: Σ2 InvΓ(1, 0.693) 1.662.52
1.38 1.742.93

1.4 1.752.89
1.4 1.722.88

1.4

Pca: µ Unif(0.1, 5) 1.31.57
1.09 1.291.52

1.09 1.31.53
1.09 1.281.53

1.08

Pca: Σ2 InvΓ(1, 0.039) 1.211.44
1.12 1.181.38

1.1 1.181.39
1.1 1.181.39

1.1

sc Kin: µ Unif(0.1, 1) 0.3720.422
0.329 0.3720.444

0.315 0.3730.444
0.319 0.3730.443

0.319

sc Kin: Σ2 InvΓ(1, 0.039) 1.171.33
1.11 1.241.5

1.14 1.231.49
1.13 1.231.48

1.13

BDW : µ Unif(48, 71) 61.768.6
54.3 61.768.5

54.8 61.768.5
54.7 61.668.5

54.5

BDW : Σ2 InvΓ(1, 0.039) 1.191.36
1.12 1.181.34

1.12 1.181.34
1.12 1.181.34

1.11

GSDex LogUnif(1.01, 1.30) 1.081.09
1.07 1.111.13

1.09 1.111.13
1.09 1.111.13

1.09

AMET: GM8 — 0.023 0.028
0.017 0.023 0.028

0.016 0.024 0.031
0.017 0.024 0.031

0.017

AMET: GSD8 — 1.37 1.76
1.17 1.40 1.92

1.18 1.41 2.00
1.18 1.39 1.91

1.17
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Figure 2: Exhaled breath concentration data used in 1,3-butadiene analysis. Individual

data are shown in the points. Aggregated data are shown in the left panel (square, with

one-standard deviation error bars), but only at data points where all 8 subjects had mea-

surements. The solid bar indicates the time during which exposure (at 5 ppm) occurred.

The middle and right panels show comparison of the original individual data with posterior

simulations (without “measurement” error) for the samples with the highest posterior like-

lihood (solid lines) for analysis of individual data (center panel) and aggregated data using

Model III (right panel).
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Figure 3: Median (symbols) and [2.5%,97.5%] confidence interval (error bars) for prior (open

circle) and posterior (solid symbols) distributions for the population means (upper panel)

and inter-/intra-individual variances (lower panel). Solid symbols represent full population

analysis of individual data (square), and aggregated analyses for Models I-III (solid circle,

triangle, and diamond, respectively).
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