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Legends for figures
Figure 1: Observed caffeine concentrations in blood as a function of postnatal age. Joined point

indicate observations belonging to a same individual .

Figure 2. Directed acyclic graph of the hierarchical statistical model. SymbolsParprior
distributions; uy, population mean parameters), variance of population parametet;
observation times}, unknown parametergy, andMg are respectively duration of gestation and
body mass at birth (both supposed exactly measukedhe administered treatmeri;, the
measured body mass at timiecvy, the variation coefficient of masses awg the measured
caffeine concentration in bloo@m, ando.wm are respectively for mean and variancecaj
parameters and. for the variance of the experimental measuremdnts. the dynamic bio-
distribution model. Square nodes are for variables of known (or supposed known) vetu&s; ¢
nodes for unknown variables and the triangle represents a deterministic link.

Figure 3. Data versus model predictions. The left and the right graphs respectively coodgrn
masses and caffeine concentrations in blood for individuals dfdheng set. On the right side
graph, each line segment describes the 90%-credibility interval associdbeddorresponding
prediction. The 90%-crediblity intervals have been plotted usingalue of the maximum
posterior vector.

Figure 4. Caffeine concentration in blood (left) and body masses (right) as a functtomeof
Predictions have been calculated for one subject df#éeing set (Subject 9) and one subject of
the test set (Subject 2). Means of the predictions are in bold lines, and the corresponding 90%-
credibility intervals are plotted with thin lines. Data are represented by dots.tiNatt®0%-
credibility interval of the predicted masses is not represented for the sobjeettraining set

(subject 9) as it is very thin.



Figure 5 : Relative residuals for caffeine concentration as a function of pdstagea Four
different models are represented: Thomsebal. ! (triangles), Leeet al. ! (squares), Falcaet
al. B! (empty circles) and the one we propose (plain circles). Relativeiadsicorrespond to the
relative differences betweetest set data points and mean caffeine concentration predictions
obtained by Monte Carlo simulations.

Figure 6: Body mass predictions as a function of the time for patient 315%heand 95%
quantiles of predictions are plotted using gray lines, the mean of predictionsdaskngold
lines. Data are represented by the dots. Panel A shows the predicted nasakged from the
original posterior-sampled parameters, using the covariates of the patientthat obify.
Predictions of panel B use, in addition, body mass data via the updated postenuet@ema
obtained by a particle algorithm.

Figure 7. Caffeine concentration predictions as a function of time for patienTt3.5% and
95% quantiles of predictions are plotted using thin lines, the mean of predictionpaoisitiges.
The data point is represented by dot. Panel A shows the predicted caffeine connanttdtiod
calculated from original posterior sampled parameters and using only vheates of the
patient. Predictions of panel B and C are performed using the posterioreperaopdatedia a
particle algorithm. In panel B, only data masses are used for parametengpaslatie only
measured caffeine concentration is used to update predictions in panel C.

Figure 8: Histograms of the marginal posterior distributions of the population elimination model
parameters. Top row graphs give the marginal distributions afrtgaal posterior. Bottom row
darker histograms give the marginal updated distributions, using one caffeinatcatme data

point for subject 31. Bottom row unfilled histograms recalldhginal posterior.



Abstract

Background: Caffeine treatment is widely used in nursing care to reduce the risk of apnea of
premature neonates. To check the therapeutic efficiency of the treaiga@mst apnea, caffeine
concentration in blood is an important indicator. The present study aims at budding
pharmacokinetic model as a basis for a medical decision supporiietblods: A new dynamic
pharmacokinetic model is proposed to predict caffeine disposition in premature nedmages.
dependence of physiological parameters is introduced to describe rapid gravetbnates. To

take into account the large variability in the population, the pharmacokmetel is embedded

in a population structure. The whole model is inferred within a Bayesian framework. To update
caffeine concentration predictions as data of an incoming patient azeted|lwe propose a fast
method such it can be used in a medical context. This involves the sequential upfdatoue!
parameters (at individual and population levelg)a stochastic particle algorithResults: Our

model provides better predictions than the ones obtained with models previously published. We
show through an example that sequential updating improves predictions of caffeteatcation

in blood (reduce bias and length of credibility intervals.) The update of the @twkimetic
model using mass and caffeine concentration data is studied. It shows how infooatigire
concentration data are in contrast to mass d@&wnclusion: This study provides the
methodological basis to anticipate caffeine concentration in blood, after atggaément if data

are collected on the treated neonate or not.

Keywords: Pharmacokinetic compartmental model, population model, Bayesian inference,

MCMC algorithms, particle algorithms, caffeine, neonates



Introduction

Premature neonates suffer from various physiological deficiencies due tontmeaturity at

birth. In particular, they can suddenly stop breathing (apnea) spontaneously aed quit
frequently’!. To reduce the occurrence of apneas, a caffeine treatment is dftémistered to
premature neonatedl. This treatment may last several weeks and can induce various secondary
effects (on ventilation, sleep, metabolism, weight, glomerular filtragtm)®*?. Unfortunately,
pediatricians have little knowledge about the actual occurrence of these, effdactsappears to

be widely variable from an individual to another. To balance treatment beaefitedverse
effects, pediatricians try to keep caffeine blood concentration withitharapeutic" interval.

This is checkedia blood sampling. Since sampling blood causes trauma on such fragile infants,
the number of blood samples is limited. Therefore, it is not possible to collemiseet
information on caffeine concentration time course in a given patient and péatistrniefer to a
standard protocol of administratibh'®. In doing so, they control treatments or times to sample
““on average" in the patients' population. The aim of this paper is to define adeKtmbe used

as a basis for a medical decision tool to help pediatricians in individualiaffgine
administration. The developed PK model allows the predictions of caffeinectioree in a new
patient for whom only easily collected covariates (duration of giestand body mass at birth),

and possibly, a few caffeine concentration data would be available. Fowéhiseed to take
advantage of all available information: data extracted from medicad, fiediatricians'
experience and published data on neonate physiology and caffeine population pharmadbkinetics
3 In this context, a Bayesian approach is efficient, as it allows an easygation of such

widely different and uncertain information souf¢g¥! and naturally allows sequential learning.



To describe caffeine concentration in blood, a compartmental PK model which is an exténtio

the one proposed by Amzel al. *®

, IS proposed. As caffeine is hydrophilic and distributes in
body wate"”), our pharmacokinetic model has only one compartment. Its main parameters are
the volume of distribution and the caffeine clearance. Moreover, lasngoof distribution
(depending on the amount of total body water) and metabolism change signifchanmiy the

few weeks of the treatmdfft??, we propose a dynamic model with time-dependent parameters.
To take into account inter-individual variability, a hierarchical population model isedefind
calibrated using historical data.

As caffeine elimination is widely variable in infant populatib‘ﬁ]s a more efficient PK model

need to integrate new information on the treated patient. We show here diteinec
concentration predictions of the treated patient can be updated by running le pégtdathm

using recorded body mass and/or caffeine concentration data. The proposed algasittita
advantage to update both individual and population parameters on the basis of new individual
data. Therefore there is no need to re-perform time-consuming calibratiespracestimate

new population parameters when incorporating this new information.

To our knowledge, any tool for caffeine dose individualization is not used intpedirvices,

until now. Even if methods for dose individualization have been proposed inetaure for

other drug€>® none has been applied to caffeine dosing. We show here how a population
pharmacokinetic model can be calibrated using a particle algorithm intordeide individual
caffeine dosing in a reasonable time. Formal optimization of the treatneotttreated; we refer

to Amzal et al'® and references therein for details on that question.

In the present study, we start by the modeling of the caffdméistribution, explaining how

physiological parameters evolve with time. The following section is tddvto defining the
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statistical model, to quantify sources of uncertainty. It also describeBatyesian framework in
which the inference problem is casted, recalling its principle and defining thencpadse
distributions. The next section details the model checking and model adequaduprsassed.
We demonstrate, in the last section, how the model predictions can be sequepdialsd with
incoming data on new treated patients, and how this can be used for designingah ceedion

support software. Finally, this approach and its results are discussed andgpapéecpve.

Methods

Pharmacokinetic Data

The pharmacokinetic data come from medical files of 35 neonates treatex Neonatal Unit
and Intensive Care of the Pediatric Department of the Hospital of Amiesascéy. These files
are the only available in the set of medical files of the neonates adinitted nursing care
department during years 1998, 1999 and 2003. Files were pre-selected such eéhdhpeme
following requirements:

- contain at least one caffeine concentration measurement,
- the treatment lasts 3 days at least,

- the treatment goes at least until the post conceptional age of the sasi¥eveeks.

The typical treatment administered to neonates consists of a charging injected 20sag/kg
possibly spread out on the first two days, then a regular oral dose of 5 rafkggday from the
third day. The treatment usually lasts until the post conceptional age of the neeaates 35
weeks. Naturally, these doses could have been modified by the pediafiociahsical reasons.
Observed concentrations of caffeine in blood were collected as requested fhysiman. It

does not exist any sampling scheme (see Figure 1).



[Figure 1 about here]
For each patient, the extracted ddfaconsisted of one to four concentrations of caffeine
measured in blood after specific treatmEr{timing, injected concentration or quantgiyven per
0s,) and measured daily body masdds,An example of collected data (for two patients) is given
in Figure 4; the observed caffeine concentrations in blood for all patiente@esented on
Figure 1. Covariates such as duration of gestafiprand body mass at birthl, were also

recorded. These data are available upon request.

The average of the body masses at birth for our neonates populdti88) (is 1.34 kg with a
standard deviation of 0.35 kg. The smallest recorded masse at birth is 0.660 kg whailgeste
is 2.170 kg. The duration of gestation of these premature neonates is 29.1owgeks average

(with a standard deviation of 2.1 weeks and a range of [23, 32] wegkstation).

A Dynamic Model of Caffeine Biodistribution in PrematureNeonates

One-Compartment Caffeine PK Model

According to published pharmacokinetic stullis caffeine distribution in the body is well
described by a one-compartment médelThe body is therefore modeled by one homogeneous
compartment of volum&/(t) at timet. Note that the time origint£0) corresponds here to birth
time. Caffeine is eliminated from the central compartment with cleai@n® The time-course

of caffeine concentration(t) (in mg/L) is therefore described using a first-order elimination.
Input drug is modeled as an IV bolus using a zero-order absorption even irf cagkedosing

(the assumption here is that absorption is very rapid). This assumption is made becassary

data to identify absorption rate are incomplete.



Body Mass Model

From simple examination of the body mass data, it appears that the growth dupeeme@nates
can be, in a first approximation, divided into two distinct periods. The body massasesr
during the first period of length t, while it subsequently increases during the second period. We
propose linear relationships to describe that variation during the two periods. Thesengunctio
depend on the covariat®é4, (body mass at birth))s (post-conceptional age at birth supposed
exactly known) and are specific to each individual:

M@)=M,+at if t<r
Mt)=M,+a,{-7_ if t>7

where a4 and a, are the slopes of the straight line respectively decreasing and increasiog of ea

phasesM; corresponds to the body mass at T (M, = M, + ;7).

Volume of Distribution Model

The volume of distribution is assumed to vary linearly with body mass:

V) =M@t) s+ €, +t-T, + ift<z
V() =M@®)f, ift>r

wherefys is defined as the ratio of the distribution volume over body mass at postptional

age 25 weeks (tim€&s) andf; is the value of that ratio at time t ( f, = Vl\jr)

). p is the slope of the

T

variation of the volume-over-mass ratio as a function of time difimed as follows:

ﬂ:Mo fr_f25
A +7-T,

The slopep is set such as the ratio volume over mass at post-conceptional agelbist,s and as the

ratio volume over mass at t is f,. As the degree of plasma protein binding is quite low for ca#f8in the
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volume of distribution is assumed comparable to total body wattrislcasef,s andf, are approximately

equal to fraction of water at timesland t.

Clearance Model

Several authors showed an increase in elimination of caffeine with postnafdl Zgé®
According to all of them, caffeine elimination increases as a functiorma&f &nd reaches a
plateau after 3 to 4.5 months. Taking into account the duration of treatmenih@lesso months
in general), we only modeled the first period and assumed that caffeine clearereeses
linearly with time with a slope parameter y and a constant at origin (t=0) CLo:

CL(t) =CL, + .

Statistical Model

The statistical model quantifies both uncertainties (on data measurements asmadlefing)

and sources of variability. Data measurements as well as modeling and intra-individual wariabilit
errors are taken into account by using a measurement error model. Tb unoeeainty on
parameters and their variability, probability distributions are used. Interidndivvariability is
quantified in the framework of a population mdtfef® by estimating its population parameters.
Given the above bio-distribution model, the caffeine concentration in blood o€l patient is

conditioned by the covariat®é4, andA, and the parameter vectér= (o, ,,7, f,, f,5,CL,,7).

v Tz

Measurement Error Model

The caffeine concentration in blood actually observed is affected by measdiremors which
are assumed to be independent and log-normally distributed with a geometriofraparand a
geometric standard deviatien Likelihood is then given by:

11



log(Y) ~ N€g(F (X,0)), 0 _
where the functioiir corresponds to the PK model described above.
A normal distribution (with zero mean and standard deviatighmeasurement error model is
also specified for body massels

M (1)~ N@ ()0,

To take into account inter-individual variability of body masses (due, for gearto urinary
excretion), the standard deviation of measured body masses has been abasidedévidual-
specific. It has been chosen as depending on the body mass of the neonate amudonmdiine
parametecvy:

oy =0ovy xM,

Population Model

The pharmacokinetic model has been embedded in a population model which conaideashh
subject parameter valuésare drawn from a statistical distributi@with given population mean
1 and variance, (Figure 2).

[Figure 2 about here]
The proposed population model has two major components: the individual and the population
levels. At the individual level, parametefs are assumed to be normally or log-normally
distributed (see Table 1) with population meapsnd standard deviatioms. Truncation bounds
of the distributions are set on the basis of the limits for plausible valuesaélorsabject, the
expected values of body mass and caffeine concentration in blood are tenfufcof
administrationX, depending on parametéy and the individual's covariates. At the population
level, cvy is assumed to be distributed according to a truncated normal distribution vath me

uowm and standard deviatiany (Table 1).
12



[Table | about here]

Bayesian Inference via MCMC

The Bayesian framework

The population model described above is fitted to observedateith Bayesian techniqué

1" The Bayesian approach vyields a samplef parameter values from their joint posterior
distribution. From Bayes' theorem, the joint posterior distribution of parametersportional to
the prior distributions of parameters multiplied by the data likelihood. The posteri@nisath

update, using collected data, of what it is known about parameters prior to énienexb.

Prior Distribution

The first step of the Bayesian approach consists in defining prior distributions thatygtrentif
information coming from pediatricians expertise or from the scieritgcature. Expertise of
clinicians is then entered in the model through its structure and through the userof prio
distributions parameters. Prior distributions on population parameters and their adsociat
parameters are summarized in Table I. On the basis of available atfomnwe specify a prior
that covers the range of value that is deemed reasonable for each pafafhetewe deal with
mean parameters, we use truncated normal or uniform distributions as priofaxvtstandard
deviation parameters truncated lognormal or loguniform laws are usesdtalRdiard deviations,
lognormal prior distributions are chosen when little prior knowledge about tzeneter is
available. For parameters on which no prior information is found, logunifornibdisbn is used.

This distribution is preferred to the more standard Inverse Gamma distribution sines ialo

require to define mean and variance (as Inverse Gamma does) and sritynsation bound.

13



For prameters related to body mass (01, ap, 1), priors are elicited®® by encoding the
pediatricians’ knowledge. From their experience, neonates loose, oneawragt 25g/day
during between the 3 to 20 first days, then gain bout 25g/day. This is used to build priors on

“auf‘azuﬂr _. Information on (70[1,0% o, , are less easily elicited and rather flat priors are

used.

Since the degree of plasma protein binding is quite low for caffeine ssten@ that the ratio
volume over mass is approximately equal to fraction of body whbers, forf,s andf,, priors are
proposed after referring to the percentage of water in body reported bintdraational
Commission on Radiological Protectitth For parameters related to clearar@es and v, prior
distributions are defined after re-parameterization of values fromtématliré . Globally, all
the previous studies agree and give the same magnitude order for the nlearclefirance at

birth, u. (estimated between 0.006 and 0.03 L/h with an estimated standard deviatiod ar
0.003) and for the shape of temporal evolution of clearangestimated between fand 5€

with an estimated standard deviation around)3®/e have chosen mean of, and x, such

they are a compromise between the published studies. To be not too resridtiteetake into

account possible differences between studied populations, standard deviations are chosen a bit

higher than those estimated in the literature. Population variance of Ck&:amlaynaucneterso(CLO2

and ayz) are assigned prior distributions truncated between 1.1 and 3 corresponding to a

population variability comprised between 10 and 300%: less than10 % of variability for a
clearance parameter in the population seems incredible and 300% seemsdaghesance inter-
individual variability of caffeine clearance was estimated to be around 80&alditts®* and is

likely a bit larger for neonates.

14



Use of data for model calibration and adequacy checking

The data are used to calibrate (fit), check and assess adequacy robdee The adopted
approach for model adequacy checkingrisss-validation 2% *¢! To that effect, data files are
divided into two groups: thgaining set and thetest set.

We start with thdraining set for model calibration (estimation of the different parameters) and
checking the fits. Then, next we use the calibrated model to check ggaagewith respect to
the test set. We also perform another evaluation of the model which consists in calculating the
percentages of caffeine concentration and body mass data points froes gk falling within
different credibility intervals for predictions. The results of these tests acesdisd further
below.

Both sets of data are formed by a random binomial assignment with parameters €opeBit3to
N=35). Twenty-four medical files are drawn for the training set (calibratidrchecking the fits)
and the other eleven files are assigned to model adequacy checking (test set).

This process allows us to validate the model. Once this is done, we recalibrateddieusing

the full data set (35 subjects) to take into account all available infiorm@ our prediction

procedure. This recalibration step gave what we call in the segigehal posterior distribution.

Model Calibration via MCMC

We assessed the model parameters by sampling their values from the jombmpdisteibutions
of all population and individual parameters, using the data from theai2¥ing set subjects. For
this, we used Markov Chains Monte-Carlo simulatffns® (Metropolis-Hastings sampler)

performed by MCSim softwaf& version 5.0.0. After 40,000 iterations of 3 parallel Markov
chains, their convergence is checked by calculating the Gelman and Ruhtio on the 20, 000

last iterationS®. The highestR computed is 1.12, showing that all chains had approximately

15



converged. To get a sample from the targeted posterior distribution, we took Iiheector out
additional 20,000 iterations of each chain after convergence checkingdite4@;D00 to 60,000)
leading to a posterior sample of 6,000 parameter vectors. Running the three M@ME€ took

about one day (on a pentium 4, microprocessor PC 2.8GHz).

Sequential Updating

For an incoming subject (just after birth), parameters can be guessed osishef lpmpulation
distribution (i.e., by sampling from those distributions). However, when dataobeeted on a
subject during treatment, the parameters for that individual can be updated. Foetparam
updating, it is possible to re-perform the calibration process described aboyeallisivailable
data including the newly recorded ones. This involves re-running Markov chains. But this
procedure is not applicable in practice by pediatricians because it isdimerging. Thus, we
propose to apply a particle algoritdfif® to sequentially update the posterior (individual and
population) parameter sample obtained by calibrativigifial posterior). Since they start from

the original posterior rather than from the priors of Table |, calculations canfastgr than the
classical calibration procedut®’. Individual parameters and population parameters can be jointly
and quickly updated. Other alternative methods to standard MCMC calibration bleave
proposed (MAP Bayesian, Multiple Model, and Interacting Multiple Mé%ﬂ’el‘)sl to update
predictions of the new patient. Our method generalizes MAP approach (considehdlee
distribution instead of maximum posteriori) and allows the updating of population parameters
which was not proposed with MM or IMM methods, to our knowledge. The updating of
population parameters would allow predictions on another future patient using theaitndor

brought by the incoming one.
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The proposed updating method assumes that a current sample is available and consists in few
steps. Call 4y, ..., 6n) our original posterior sample of parameters, which approximate a
distributionp(®), and let's denotg the new coming data. Eaéhis also called a "particle” in this
framework. We want to transform our sample into an another one (ofssaetd) from p(@|y).
The detailed updating algorithm can be described as follows:

e For each particlei=1..N, compute its normalized weight; (as in the Sampling

Importance Resampling scheme of Rufin*”’

p(é|y)
V\Ii oC
p(4,)

< p(y6,)

These weights are easy to compute since they take the form of likelihoud ter
normalized by the sum of all likelihood.
e ResampleN particles ¢’1, ..., 0'n) from (@1, ..., 6y) according to the multinomial
distributionM(N,wy,...,Wy)
e To avoid degeneracy problems, enrich the sample using a Markov Kerméiose
stationary distribution isp(@|y). For eachi=1..N, we draw §'’;, ..., 6’’n) from
(0, ..., 0'n). By definition, this transforms an approximated samplg, (.., 6’n) from
p(0|y) into another sampl& (4, ..., 8°'N) from p(d|y), but now richer (more diverse). This
final sample is the updated parameter sample.
A convenient choice for the Markov st€pis a Metropolis-Hastings move as used in standard
MCMC B 38 we chose a Metropolis-Hasting step with an independent saliplier which
candidates for population parameters are drawn frorarigenal posterior sample and individual

parameter from population distribution. To perform updating procedure, we use btatiabre.

17



Results

Posterior Distributions

The MCMC-calibrated model has been first checked by analyzing the initiakipostectors'
sample (data not shown, see Table Il for a summary of final posterior ejtimat

Means of mass model parametersandu,, were quite well appraised priori by the experts,
but calibration has decreased the standard deviation of these two parameteaturEreaonates
lose, on average, 30 grams per day until the end of the sixth dayaihema second period, 23
grams per day on average. Body mass loss and the length of time whithgdecrease occurs
are quite variable between individual (around 40% for both). The values pfmaght gain are
less variable in this population (around 25%).

Posterior means of the population parameters related to the volume ibuttr (s andus,)
are close to the priors. This is partly due to the very informative nature @iithr distribution
for these two parameters. The mean of the volume-over-mass ratio intpopisaqual to 85%
at post-conceptional age 25 weeks and 75%inat t. In parallel, calibration has increased
knowledge on population variability (The CVs &fs ando;, decreased from 20% to 16.3% and
15.3% respectively).

On average, clearance at birth is about 0.3 L/day. For our neonatesl{otBamass: 1.340 kg
and mean distribution volume: 85% of mass), the half-life of caffeing+2.6 days. Clearance
at birth, CLo, and slope of the temporal linear evolution of clearance, vy, are quite variable in this

population (CV ofCL, about 27% and CV of y equal to 77%).
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Model Fit Checking

Figure 3 shows model-predicted values using the joint maximum posterior pararaetor
versus their observed counterparts.

[Figure 3 about here]
The posterior sample gives quite a good fit to the body mass observationsefageaof the
relative errors for mass is about 0.1% with a minimum around -12.4% aactinum of 14%.
Predicted caffeine concentrations in blood are not that good; the relative err@tisy&berage
with a minimum and a maximum respectively equal to -108% and 48%. Figuren #he
average of predicted caffeine concentrations and body mass predictionsneydoitione subject
of thetraining set (Subject 9). As already observed on Figure 4, model predictions vseliiloe
the data.

[Figure 4 about here]

Model Adequacy assessment

Using the posterior sample, for each patient of tdse set, mean curve and 90%-credibility
intervals for predictions of body mass and caffeine concentration have testructed (from

Monte Carlo simulations) as a function of time (Subject 2 is the only plattéagare 4). For all

the subjects of theest set, most of the caffeine concentration data fall in the credibility interval
and body masses data are well estimated.

The empirical percentages of data points falling within different credibilityviakerare close to

the credibility percent coverage (last line of Table Ill), showing that theeshaf the statistical
distributions chosen to model measurement errors are appropriate. The fact that observed

percentages for caffeine concentration tend to be lower than the théameéisan the tails could
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be explained by the small number of caffeine concentration data points availaldeast tat

(N=21 for 11 subjects).

Comparison of Predictions from Previously Published Caffeine PK Models

Three population PK models for caffeine have been previously propdgedCaffeine
concentration predictions for data belonging to e set are made using these three models.
Two of these models (Lee's and Falcao's) cannot predict body masses of neonates. Using set body
masses (as observed at birth, for example) would be very penalizing for thdsks,nso we
choose to use the actually measured body masses, which is to their advantaige Chtto
simulations are run on the basis of the published parameter distributions to obtain credibility
intervals on caffeine concentration predictions. For each model previpugbpsed average
mean square errors (AMSE) and percentages of adequacy data points fallingerandiff
“theoretical" credibility intervals are given in Table Il.

[Table 1l about here]
Our model better assesses uncertainty on caffeine concentration predictions: dobserve
percentages of data points falling in the ““theoretical" credibility inteesr@better than those

obtained with previous models. These models have higher bias or over-dispersion (higher AMSE)

. o Yo=Y . — .
than our model. Relative resMualsQ% ,Yobs Observations ant the estimate) of each model
obs

are plotted against postnatal age on Figure 5. It appears that our model gsystematic
prediction error at early time point (between the third and the eighth daytofieérga This point
is discussed further below. However, most of the times, the proposed modebgtter mean
predictions than the other models for this data set.

[Figure 5 about here]
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Recalibration

Again, three chains of 60, 000 iterations are run. One out of 10 of th0laB00 simulations of
the three chains are recorded, yielding 12, 000 parameter sets. The Geibnarcdhvergence
diagnostic is less than 1.06 for all parameters. Using this very final sample, summary statistics for
marginal posterior distributions of the population parameters are given in Table Il|

[Table Il about here]
Compared to posteriors obtained during the first calibration step (involving 24 subjects), the
estimates have not drastically changed. Estimated statistics (means andl sienddions) of
population parameters have changed by less than 33%. Parameters retat@adtGL, are the
most significantly updated. p,1 is higher than previously; 6,1, ucLo @ndocio have also increased.
The estimated uncertainty of these parameters is slightly higher than afterihecatiibration
step. This is due to fact that the estimates of the individual parar@étedad o, for the subjects

of thetest set are not fully centered in the previous population distribution.

Sequential Updating of Predictions Using Sequential Incoming Data

Obviously, more accurate predictions and credibility intervals would arise fa&mg into
account the incoming data (body masses, blood sangidesabout subjects as they are clinically
followed. This sequential update can easily be performed by correctingetieysr posterior
distributions using the new data. Since this update would not induce a drastic changef it
necessary to run new MCMC chains. We demonstrate here the use otientaffay to do ivia
particle methodd”.

Let us illustrate the method through an example. Sequential updating is performpatent 31

(of the test set). We examine how different kinds of data can improve caffeine concentration
predictions. The update is first done using mass data, then using caffeine concentiatitheda
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update could also be done with both kinds of data (mass and caffeine concentratioth&lata)
procedure would be same. Performing update with body mass data and cajfeiest@tion
data separately allows to illustrate how informative caffeine concentratiaradain comparison
with body mass data.
Neonate 31 is born #,=30 weeks, with body madd,=1.575kg. The daily body masses were
measured during the 9 first days of treatment (Figure 6). The update is implefirshteal the
basis of recorded mass, using an original posterior sample of size of 12,000. Aedupda
parameters sample is then obtained.
The updated posterior distributions tar, a1 and T are more accurate than the initial guess. Body
masses dramatically increase knowledge about the time evolution patteasfanthe patient.
Figure 6 shows, for that subject, the predicted masses generated framgthal posterior
sampled parameters (panel A) and the predictions generated from upaiaetters (panel B).
Masses are clearly much better predicted in panel B. This updating procedusbooblsixty
seconds (on a pentium 4, microprocessor PC 2.8GHz running Windows XP), whereas running the
three chains of the calibration procedures took about one day. The proposed ypdatadgre
is about 1500 time faster than MCMC initial calibration.

[Figure 6 about here]
It is interesting to see how update can improve caffeine concentration predictidfesneCa
concentration in blood was measured for this subject on the third day of tre&tsteat mg/L).
The predictions derived from tleeiginal posterior distribution are quite bad (Figure 7A) and the
predictions obtained from updated sample using the only body mass data are not lggyod eit
(Figure 7B). Whereas predictions for masses are much better after massetea updating
(Figure 6), caffeine concentration predictions on Figure 7B seems unchi@hgedistribution

tails below 5%tile and above the 95%tile do change in fact).
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The same updating method is then performed using only the caffeine concentragorabon
(Figure 7C). The concentration data now falls within the 90%-credibility intenghltlze mean
estimate (9.7 mg/L) is also nearer the data after updating than befofe niG7L). The
concentration data is very informative relatively compared tottigenal posterior, especially on
clearance, as expected. The gain on precision of predictions brought lopdatng using
caffeine concentration data can be measured by comparing the sprewsd 9f%-credibility
interval on caffeine concentration predictions before and after the updatenddre range
between the lower and the upper bounds of the credibility interval (respectvedgmonding to
the 5th and the 95th %dtiles) is equal to 26.2 mg/L before updating, 2BL9 afier updating
using mass data and has been reduced to 13.2 mg/L after updating using caffeine toncentra
data.

[Figure 7 about here]
CLo marginal updated distribution for individual'31 has been transformed (in simapeean)
after updating (the mean @i, has changed from 0.017 to 0.033 and the standard deviation has
staid around 0.008). On the other handistribution has not been much revised (the average of
has changed from 1.0480° to 1.087x10° and the standard deviation from 0.889° to 1.020
x10).
An important concern is to decide when to update the distributions. It would not be optuooal t
it every day, for example after each body weight measurement, baxfabselow sensitivity of
caffeine elimination parameters to those measurements. A pragmatic general answdooad b
in Chopin 2002*. In our case, a reasonable choice might be to perform the updating @ssoon
the observed body mass goes out of the predictions' (90%) credibility intelmaover, since
the caffeine concentration data are strongly informative, it seems that spdatd be done after

each new caffeine concentration measurement.
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The updating procedure improves predictions for an individual as new data are dpbecte

thus, allows to guide dosing for this particular patient taking into account glhytsological
characteristics (given by the covariates and the data). At the samethimerocedure also
updates the joint population parameters distributions since MCMC calibration produces samples
from the overall joint distribution of population and individual parameters. &i@uishows
histograms of the marginal updated distributions for population mean and standatmmlef

CLo andy. As only one caffeine concentration data point on one subject has been useddo updat
these population parameters, their distributions have not drastically changed. Nevertheless, piciLo
andoco distributions have been slightly translated to the right after updating, correspémding
greater values. This is coherent with the high valu€leffor that individual. On the other hand,

o, distributions before and after updating shows thahas been slightly reduced because the
estimated for the new subject is well centered with the original population distribution.

[Figure 8 about here]

Discussion and Perspectives

The present study aimes at providing the methodological basis for a quantiéatisi®en support
software for pediatricians who would like to anticipate neonates' caffeire@entration in blood,
for a given treatment. Fitting a population model to individual data allowed uwat@

predictions for new subjects, given their covariates at birth, and a safmaledom vectors of
parameters from the posterior population distribution. These simulations give @&mageav
prediction” for future caffeine concentrations during treatment, as well dibitite intervals for

them. We present a fast and easy way to update those predictions osishe babject specific

data on body mass and caffeine concentration in blood.
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Three caffeine distribution population models have already been prépbs@tiomson et al.'s
model assumes that clearance depends on body mass at birth and does not acomasy for
changes over time. Similarly, caffeine distribution volume is also assumed to stay constant during
treatment period. Making predictions over weeks, in such a context, can bedmgleiace the
physiological variable of the premature neonates change significantly duringstitarfiester of

life. Falcaoet al. and Leeset al.'s models consider parameters (clearance and volume) as dynamic
but requires infant body mass values at the time at which caffeine concentration is to be
predicted. Lacking a body mass model, such models cannot be usedlfotigne over several

days or weeks. However, even with a perfect mass model (i.e. using acteakyred body
masses), these two models do not give predictions as good as those of our ne{geadéigure

5). Overall, the model we propose gives the best predictions for our neonatetipopdi&o

points need however to be stressed:

e Its mean predictions are still quite far from some data points (7 ovedd&ive residuals
errors are over 50%) revealing that the model might still be improved. Maoteelative
residual errors show a trend with post-natal age. Predictions of all fourlsmmeer
estimates just after birth and underestimats after about 25 days of postnatal age (Figure 5).
This implies the models are not able to capture all information containeddattne

e Our model works quite well with local (Amiens) neonates. We do not knowvdttd be
the best at describing Thomson's, Lee's or Falcao's data. We would recoforrendw
calibration when going to new populations.

The population variability in caffeine clearance is relatively large and is thee aafuthe
relatively large width of credibility intervals for the caffeine concerdgratpredictions. This
actually reflects the daily reality met by physicians. Part of thislgity might be explained by

introducing covariates which have not been taken into account here (as caffeine oo tobacc
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maternal consummation during pregnancy, other administered treatment than cdffeine,
example).

Another improvement could concern the model itself, and more precisely the alvsarptel.

We made the assumption that oral absorption is very rapid. This is questionable. Nbtrdesc
precisely the absorption process could generate errors in predictionsydtne@rpoints. Given
that misspecification the model could over-estimates the speed of caffeine bioatyaddieit

the third day (beginning ger os administration). This over-estimation could lead to an under-
dosing over that period. A first-order oral absorption model might be better in tiasicsi.
However, after about the eighth day, caffeine absorption by oral route seememi@ss quite
well represented with a zero-order absorption rate (see Figure 53ls?&/eénade some choices
which could be reconsidered, such as the linear form for the temporal evaiupbgsiological
parameters, or the relative error to model the intra-individual variabilithe body mass. Non-
parametric modelind °” of population distribution could also be an interesting approach. Non-
parametric models would relax hypotheses on parameter distributions. They cowd allo
identification, for example, of bimodal population distributions, which could help in deiagn
new explanatory covariates.

As different updating methods exist, it could be interesting to compare the diffpprotehes

of sequential updating (MAP Bayesian, Multiple Model, and Interacting Multiple Mottel).
would also be interesting to compare our method to othef*dfiésalready proposed for dose
individualization by applying them to caffeine dosing, for example.

A therapeutic dosing support tool should incorporate a sequential updating proceduretisech as
one detailed before. Admittedly, our procedure needs to be tuned (jump rfiumatimber of
particle}*” but it is fast, automatic and can be programmed easily in a medical support too

(currently under development). The only requirement for the user is totkateewly collected
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data. The pediatrician does not need to know details of modeling or statisticefdeeutic
support tool would, then, give individualized predictions on the basis of informatiected on

the treated patient. The updating using caffeine concentration data cdretjereestimate (less
biased) and as the same time, reduce the spread of credibility inteocadfesne concentration
predictions (by around a factor 2, in our example). The proposed pafgolgthan allows to
quickly update individual parameters distribution. Moreover, population parameters distributions
are updated simultaneously so that all available information from pastrentpatients will be
available for any new subject entering the hospital.

To validate the benefit of the use of such a pharmacokinetic tool, a clinical trial coulsielokedna

a judgement criteria including observed effects after the comparissvogsatient groups: one
receiving the usual dosing and another one for which the dosing is assisted by the software too
Finally, this technique was applied to caffeine as a demonstration study but could abgbidx

to other drugs with a narrower therapeutic window. Indeed, that would be allotieeuseful.
Drugs for which the target serum concentration is close to the concentratioelwfing to
severe adverse effects, would certainly benefit to this method since vits aloquick and

individualized estimation of the drug concentration using a limited number of meassem

27



Reference List

1. Thomson AH, Kerr S, Wright S. Population pharmacokinetics of caffeine in tesaaad
young infants. Ther Drug Monit 1996;18(3):245-53.

2. Lee TC, Charles B, Steer P, Flenady V, Shearman A. Population pharmacskofietic
intravenous caffeine in neonates with apnea of prematurity. Clin PhalrmBcer
1997;61(6):628-40.

3. Falcao AC, Fernandez de Gatta MM, Delgado Iribarnegaray MF, Santos BuelgaiB, Ga
MJ, Dominguez-Gil A, et al. Population pharmacokinetics of caffeine in preenatwnates. Eur

J Clin Pharmacol 1997;52(3):2171-

4. Daily WJ, Klaus M, Meyer HB. Apnea in premature infants: monitoring, incidenad, he
rate changes, and an effect of environmental temperature. Pediatrics 196814034)

5. Aranda JV, Turmen T, Davis J, Trippenbach T, Grondin D, Zinman R, et al. Effect of
caffeine on control of breathing in infantile apnea. J Pediatr 1983;103(@:975-

6. Aranda JV, Gorman W, Bergsteinsson H, Gunn T. Efficacy of caffeine in &ettrh
apnea in the low-birth-weight infant. J Pediatr 1977;90(3):467-72.

7. Aranda JV, Grondin D, Sasyniuk Bl. Pharmacologic considerations in the thafrapy
neonatal apnea. Pediatr Clin North Am 1981;28(1):113-33.

8. Zanardo V, Dani C, Trevisanuto D, Meneghetti S, Guglielmi A, Zacchello Gl et a
Methylxanthines increase renal calcium excretion in preterm infants. Biobnatke
1995;68(3):169-174.

9. Gillot 1, Gouyon JB, Guignard JP. Renal effects of caffeine in preterm infais.
Neonate 1990;58:133-136.

10. D'Urzo AD, Jhirad R, Jenne H, Avendano MA, Rubinstein I, D'Costa M, et attkif
Caffeine on ventilatory responses to hypercapnia, hypoxia, and exéncltumans. J. Appl.
Physiol. 1990;68(1):322-328.

11. Aranda JV, Clozel M. Pharmacologic effects of caffeine and theomhyih the
premature infant. Dev Pharmacol Ther 1982;4 Suppl:165-72.

12. Karacan I, Thornby JI, Anch M, Booth GH, Williams RL, Salis PJ. Dostectlsleep
disturbances induced by coffee and caffeine. Clin. Pharmacol. Ther. 1976;20@&3%82-

13. Henderson-Smart DJ, Steer P. Methylxanthine treatment for apneadmmpnefants.
Cochrane Database Syst Rev 2000(2):CD000140.

14. Bhatt-Mehta V, Schumacher RE. Treatment of apnea of prematurityiatPalerugs
2003;5(3):195-210.

15. Box GEP, Tiao G. Bayesian Inference in Statistical Analysis. New York; 1973.

16. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. London: Chapman &
Hall; 19%.

17. Bernardo JM, Smith AFM. Bayesian Theory. New York: Wiley; 1994,

18. Amzal B, Bois FY, Parent E, Robert CP. Bayesian optimal design via interaatiide
systems. Journal of the American Statistical Association 2006; 101(474):773-785.

19.  Warszawski D, Gorodischer R. Tissue distribution of caffeine in prematunésiafiad in
newborn and adult dogs. Biol. Neonate 1981;1.

20. International Commission on Radiological Protection (ICRP). Basic Anatomchl a
Physiological data for Use in Radiological Protection: Reference Valteskh®Im, Sweden:
Pergamon; 2002.

28



21. Pons G, Carrier O, Richard M-O, Rey E, D'Athis P, Moran C, eDalelppmental
changes of caffeine elimination in infancy. Dev Pharmacol Ther 1988;11:258-264.

22.  Carrier O, Pons G, Rey E, Richard MO, Moran C, Badoual J, daalration of caffeine
metabolic pathways in infancy. Clin Pharmacol Ther 1988;44(2):145-51.

23. Bourgoin H, Paintaud G, Buchler M, Lebranchu Y, Autret-Leca E, Mentre &l. et
Bayesian estimation of cyclosporin exposure for routine therapeuwiic rdonitoring in kidney
transplant patients

Nonparametric estimation of population characteristics of the kinetics of lithiwm fr
observational and experimental data: individualization of chronic dosing regimen usew a
Bayesian approach. Br J Clin Pharmacol 2005;59(1):18-27.

24.  Sandstrom M, Karlsson MO, Ljungman P, Hassan Z, Jonsson EN, Nilsson C, et al.
Population pharmacokinetic analysis resulting in a tool for dose individualizdtlmmsulphan in
bone marrow transplantation recipients. Bone Marrow Transplant 2001;28(7):657-64.

25. Taright N, Mentre F, Mallet A, Jouvent R. Nonparametric estimation of populatio
characteristics of the kinetics of lithium from observational and experimenta: da
individualization of chronic dosing regimen using a new Bayesian approach. TigiMdnit
1994;16(3):258-69.

26. Arnaud M. Metabolism of caffeine and other components of coffee. In: Caifte a
Health. New York: S Garattini; 1993. p. 43-93.

27. Aranda JV, Collinge JM, Zinman R, Watters G. Maturation of caffeineingtian in
infancy. Arch Dis Child 1979;54(12):94%-

28. Le Guennec JC, Billon B, Pare C. Maturational changes of caffeimemtrations and
disposition in infancy during maintenance therapy for apnea of prematurity: noéuef
gestational age, hepatic disease, and breast-feeding. Pediatrics 1985;76(5):834-40

29. Beal SL, Sheiner LB. Estimating population kinetics. Crit Rev Biomed Eng
1982;8(3):195-222.

30. Racine-Poon A, Smith AF. Population models. In: Berry DA, editor. Statisti
Methodology in the Pharmaceutical Sciences. New York: Marcel Dekker, Inc.; 1.9P80-162.

31. Garthwaite PH, Kadane JB, O'Hagan A. Statistical methods for elicitoigalphty
distributions. Journal of the American Statistical Association 2005;100(470):680-700.

32. Kadane JB, Wolfson LJ. Experiences in elicitation. Journal of thelRstatistical
Society Series D-the Statistician 1998;47(1):3-19.

33.  Chen MH, Ibrahim JG, Shao QM, Weiss RE. Prior elicitation for model seleatid
estimation in generalized linear mixed models. Journal of Statistical Planncthdnterence
2003;111(1-2):57-76.

34.  Arnaud M, Weitzholtz H, Voegelin M, Bircher J, Presig R. Assessment oftihehcome
P-448 dependent liver enzyme system by caffeine breath test. In: sato R Miditasomes drug
oxydation and drug toxicity. New York: Wiley Interscience; 1982. p. 443-444.

35. Stones. Cross-validation choice and assessment of statistical predictional dbtine
Royal Statstical Society B 1974;36:111-147.

36. Gelfand AE, Dey DK, Chang H. Model determination using predictive distributions with
implementation via sampling-based methods. In: Bernardo JM, Berger JO, D&yi8mith
AFM, editors. Bayesian Statistics 4. Oxford: Oxford University Press; 1992. A6l47-

37. Robert C. Méthodes de Monte Carlo par Chaines de Markov. Paris: Ecorkdfia;

38. Gilks WR, Richardson S, Spiegelhalter DJ. Markov Chain Monte Carlo inid@ract
London: Chapman & Hall; 1996.

29



39. Bois FY, Maszle D. MCSim: a simulation program. Journal of Statistickiv&e
1997;2(9)http://toxi.ineris.fr/activites/toxicologie _quantitative/mcsim/mcsim.php

40.  Chopin N. A sequential particle filter method for static models. Biometrika 2002;89:539-
552.

41.  Tierney L, Mira A. Some adaptive Monte Carlo methods for Bayesian inference. Statistics
in Medicine 1999;18: 2507-2515.

42. Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for
Bayesian filtering. Statistics and Computing 2000;10(3):197-208.

43. Doucet A, De Freias J, Gordon N. Sequential Monte Carlo Methods in Practice. New
York: Springer-Verlag; 2001.

44. Ridgeway G, Madigan D. A sequential Monte Carlo method for Bayesian aratlysis
massive datasets. Data Mining and Knowledge Discovery 2003;7(3):301-319.

45. Bayard DS, Jelliffe RW. A Bayesian approach to tracking patients hakempiog
pharmacokinetic parameters. Journal of Pharmacokinetics and Pharmadedynam
2004;31(1):75-107.

46. Geweke J. Bayesian inference in econometric models using Monte Carlo integration.
Econometrica 1989;24:1317-1399.

47. Rubin DB. Using the SIR algorithm to simulate posterior distributions. In: Bernardo JM,
De Groot MH, Lindley DV, Smith AFM, editors. Bayesian Statistics 3. Oxford:ofixf
University Press; 1988. p. 395-402.

48. Tierney L. Markov chains for exploring posterior distributions. Annals of Statistics
1994;22(4):1701-1762.

49.  Jelliffe R, Schumitzky A, Van Guilder M. Population
pharmacokinetics/pharmacodynamics modeling: parametric and nonparametric methods. Ther
Drug Monit 2000;22(3):354-65.

50. Wakefield J, Walker S. Bayesian nonparametric population models: formulation and
comparison with likelihood approaches. J Pharmacokinet Biopharm 1997;25(2):235-53.

30


http://toxi.ineris.fr/activites/toxicologie_quantitative/mcsim/mcsim.php

Tables

Table I: Parameter distributions of our PK model Summary of the parameter distributions at

individual level of the PK model and population prior distributions used in the calibration

process.

Parameter (unit)

Distribution

Truncation bounds

Individual level
a1 (kg/h)
az (kg/h)
 (h)
f2s (L/kQ)

f: (L/kg)

CLo (L/h)

v (L/h?)

cvv (unitless)

Population level
Hal (kg/h)
ta2 (kgrh)
e (N)
pizs (LIkQ)
ty (LIkg)
tcio (L/h)
Hy (L/hz)

Oql

Og2

O

0125

Ofc

ocLo

Oy

Lo (Unitless)
OcwM

ac

Normal (4,1, 6,1)
Normal (>, 6.2)
LogNormal (i, o)
LogNormat (uszs, o125)
LogNormal (uz . o)
LogNormal (ucio, ocLo)
LogNormal (u,, o,)
Normal (o, Gam)

Normal (-10°, 0.6¢10°)
Normal (10°, 0.5¢10°)
Uniform
Normal (0.85, 0.05)
Normal (0.75, 0.05)
Normal (0.02 , 0.01)
Normal (510° , 5x10°)
LogNormal (0.4x10°, 2.96)
LogNormal (0.4x10°, 2.96)
LogNormal (1.32, 2.30)
LogNormal (1.183, 1.22)
LogNormal (1.183, 1.22)
LogUniform
LogUniform
Uniform
Normal (0.030, 0.020)
Normal (1.105, 0.1)

[-5x10°; 0]
[0 ; 3x10°7]
[72 ; 480]
[0.8;0.9]
[0.7 ; 0.8]
[0 ; 0.06]
[5x107 ; 109
[0.010; 0.100]

[-5x10°; 0]
[0 ; 3x10°7]
[72 : 480]
[0.8;0.9]
[0.7 ; 0.8]
[0; 0.04]

[5x107 ; 107

[1.01; 2]
[1.01; 2]
[1.01; 2]
[1.1; 3]
[1.1; 3]
[0.010; 0.100]
[0.005 ; 0.100]
[1.01; 2]

! For LogNormal distributions, the parameters in parenthesis correspond to the gemmatric

(exponential of the mean in log-space) and geometric standard deviation (exparfetite

standard deviation in log-space).
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Table II: Indicators to compare the existing PK models Average mean square error (AMSE)

and percentages of adequacy data points falling within the ““theoretical" lkityediitbervals

given by various models. These data points concern caffeine concenwhttbe subjects

belonging to theest set. 21 data points are available for caffeine concentration in blood.

Nominal credibility interval coverage (%)

Model AMSE

40 50 80 85 90 95
Thomson'set al. 4.8 4.8 33.3 333 381 381 1.358
Lee'set al. 9.5 9.5 143 28.6 429 47.6 2.207
Falcao'set al. 9.5 143 429 429 476 57.1 2.036
New proposed model| 48.2 524 619 714 81.0 81.0 0.411
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Table Ill: Summary statistics for the ultimate (N

distributions of the population parameters.

= 35 subjects) marginal poterior

Population parameters mean SD 2.5%tile 97.5%tile
Ual 0.00101 0.000174 0.00129 0.000592
a2 0.000948  4.21x10° 0.000864 0.00103
Uz 130 15.9 96.3 159

25 0.85 0.0215 0.808 0.892

e 0.752 0.0213 0.708 0.793
UcLo 0.0154 0.00183 0.0121 0.0192
W 8.4%10° 2.4%10° 4.0X10° 1.3%10°
Oul 0.000676  0.000146 0.000464 0.00103
Ou2 0.000237 3.19x10° 0.000185 0.000309
o 1.6 0.145 1.38 1.93

025 1.21 0.2 1.0 1.69

o 1.21 0.199 1.01 1.7

acLo 1.54 0.198 1.2 2

o, 1.91 0.456 1.17 2.86

Uewm 0.0179 0.00462 0.0105 0.0269
OcwM 0.018 0.00332 0.012 0.025

oc 1.36 0.0483 1.28 1.47
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Figure 1: Observed caffeine concentrations in blood as a function of postnatal age. Joined points
indicate observations belonging to a same individual.
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Figure 2: Directed acyclic graph of the hierarchical statistical model. SymbolsParprior

Subject i

distributions; uy, population mean parametersy, variance of population parametet;
observation times, unknown parametersy, andMg are respectively gestational age and body
mass at birth (both supposed exactly measubedhe administered treatmemdt;, the measured
body mass at timé; cvy, the variation coefficient of masses aMgd the measured caffeine
concentration in blooducw, andoom are respectively for mean and variancegf parameters
and o for the variance of the experimental measuremdnts the dynamic bio-distribution
model. Square nodes are for variables of known (or supposed known) valuday ciotles for

unknown variables and the triangle represents a deterministic link.
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graph, each line segment describes the 90%-credibility interval associdkeddorresponding
prediction. The 90%-crediblity intervals have been plotted usingalue of the maximum
posterior vector.

36



Subject9 -

1.6}

Body mass {(kg)

1.2

Caffeine concentration {g/L) Caffeine concentration {giL)

| Subject? .
0.03 j =
=,
0.02} @
’ o
E
0.01} 5
o
m

I] 1 1 1 1

D 5 10 15 20 25

Time {day) Time (day)

Figure 4. Caffeine concentration in blood (left) and body masses (right) as a functioneof
Predictions have been calculated for one subject af#éingng set (Subject 9) and one subject of

the test set (Subject 2). Means of the predictions are in bold lines, and the corresponding 90%-
credibility intervals are plotted with thin lines. Data are represented by dots.thad 90%-
credibility interval of the predicted masses is not represented for the subjleetaaflibration set
(subject 9) as it was very thin.
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Figure 5. Relative residuals for caffeine concentration as a function of postnatalFage.
different models are represented: Thomebal. ! (triangles), Leet. al. @ (squares), Falcagt.

al. B! (empty circles) and the one we propose (plain circles). Relative rissihreespond to the
relative differences betwedraining set data points and mean caffeine concentration predictions

obtained by Monte Carlo simulations.
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Figure 6: Body mass predictions as a function of the time for patient 31. The 5 %, and 95 %
quantiles of predictions are plotted using gray lines, the mean of predictionsdaskngold
lines. Data are represented by the dots. Panel A shows the predicted nasskded from the
original posterior-sampled parameters, using the covariates of the patientthat oliry.

Predictions of panel B use, in addition, body mass data via the updated postennetpes
obtained by a particle algorithm.
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Figure 7: Caffeine concentration predictions as a function of time for patient 31. Tharkl @b

% quantiles of predictions are plotted using thin lines, the mean of predictions akirimeés.

The data point is represented by dot. Panel A shows the predicted caffeine connanttdtiod

calculated from original posterior sampled parameters and using only vheiates of the

patient. Predictions of panel B and C are performed using the posterioreparanpdatetia a

particle algorithm. In panel B, only data masses were used for parameter updatengnly

measured caffeine concentration was used to update predictions in panel C.
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Figure 8: Histograms of the marginal posterior distributions of tmpulation elimination model
parameters. Top row graphs give the marginal distributions afrtgmal posterior. Bottom row darker
histograms give the marginal updated distributions, using one @affententration data point for subject

31. Bottom row unfilled histograms recall the original posterior.
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