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Legends for figures 
Figure 1: Observed caffeine concentrations in blood as a function of postnatal age. Joined points 

indicate observations belonging to a same individual . 

Figure 2: Directed acyclic graph of the hierarchical statistical model. Symbols are: P, prior 

distributions; μθ, population mean parameters; ıθ, variance of population parameter; t, 

observation times; θ, unknown  parameters; A0 and M0 are respectively duration of gestation and 

body mass at birth (both supposed exactly measured); X, the administered treatment; Mt, the 

measured body mass at time t; cvM, the variation coefficient of masses and Yt, the measured 

caffeine concentration in blood. μcvM, and ıcvM are respectively for mean and variance of cvM 

parameters and ıc for the variance of the experimental measurements. F is the dynamic bio-

distribution model. Square nodes are for variables of known (or supposed known) values; circular 

nodes for unknown variables and the triangle represents a deterministic link. 

Figure 3: Data versus model predictions. The left and the right graphs respectively concern body 

masses and caffeine concentrations in blood for individuals of the training set. On the right side 

graph, each line segment describes the 90%-credibility interval associated to the corresponding 

prediction. The 90%-crediblity intervals have been plotted using ıc value of the maximum 

posterior vector. 

Figure 4: Caffeine concentration in blood (left) and body masses (right) as a function of time. 

Predictions have been calculated for one subject of the training set (Subject 9) and one subject of 

the test set (Subject 2). Means of the predictions are in bold lines, and the corresponding 90%-

credibility intervals are plotted with thin lines. Data are represented by dots. Note that 90%-

credibility interval of the predicted masses is not represented for the subject of the training set 

(subject 9) as it is very thin. 
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Figure 5 : Relative residuals for caffeine concentration as a function of postnatal age. Four 

different models are represented: Thomson et al. [1] (triangles), Lee et al. [2] (squares), Falcao et 

al. [3] (empty circles) and the one we propose (plain circles). Relative residuals correspond to the 

relative differences between test set data points and mean caffeine concentration predictions 

obtained by Monte Carlo simulations. 

Figure 6:  Body mass predictions as a function of the time for patient 31. The 5%, and 95% 

quantiles of predictions are plotted using gray lines, the mean of predictions using dark bold 

lines. Data are represented by the dots. Panel A shows the predicted masses  calculated from the 

original posterior-sampled parameters, using the covariates of the patient at birth, only. 

Predictions of panel B use, in addition, body mass data via the updated posterior parameters 

obtained by a particle algorithm. 

Figure 7: Caffeine concentration predictions as a function of time for patient 31. The 5% and 

95% quantiles of predictions are plotted using thin lines, the mean of predictions using bold lines. 

The data point is represented by dot. Panel A shows the predicted caffeine concentration in blood 

calculated from original posterior sampled parameters and using only the covariates of the 

patient. Predictions of panel B and C are performed using the posterior parameters updated via a 

particle algorithm. In panel B, only data masses are used for parameter updating while only 

measured caffeine concentration is used to update predictions in panel C. 

Figure 8: Histograms of the marginal posterior distributions of the population elimination model 

parameters. Top row graphs give the marginal distributions of the original posterior. Bottom row 

darker histograms give the marginal updated distributions, using one caffeine concentration data 

point for subject 31. Bottom row unfilled histograms recall the original posterior. 
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Abstract 

Background: Caffeine treatment is widely used in nursing care to reduce the risk of apnea of 

premature neonates. To check the therapeutic efficiency of the treatment against apnea, caffeine 

concentration in blood is an important indicator. The present study aims at building a 

pharmacokinetic model as a basis for a medical decision support tool. Methods: A new dynamic 

pharmacokinetic model is proposed to predict caffeine disposition in premature neonates. Time 

dependence of physiological parameters is introduced to describe rapid growth of neonates. To 

take into account the large variability in the population, the pharmacokinetic model is embedded 

in a population structure. The whole model is inferred within a Bayesian framework. To update 

caffeine concentration predictions as data of an incoming patient are collected, we propose a fast 

method such it can be used in a medical context. This involves the sequential updating of model 

parameters (at individual and population levels) via a stochastic particle algorithm. Results: Our 

model provides better predictions than the ones obtained with models previously published. We 

show through an example that sequential updating improves predictions of caffeine concentration 

in blood (reduce bias and length of credibility intervals.) The update of the pharmacokinetic 

model using mass and caffeine concentration data is studied. It shows how informative caffeine 

concentration data are in contrast to mass data. Conclusion: This study provides the 

methodological basis to anticipate caffeine concentration in blood, after a given treatment if data 

are collected on the treated neonate or not. 

 

Keywords: Pharmacokinetic compartmental model, population model, Bayesian inference, 

MCMC algorithms, particle algorithms, caffeine, neonates 
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Introduction 

Premature neonates suffer from various physiological deficiencies due to their immaturity at 

birth. In particular, they can suddenly stop breathing (apnea) spontaneously and quite 

frequently[4]. To reduce the occurrence of apneas, a caffeine treatment is often administered to 

premature neonates[5-7]. This treatment may last several weeks and can induce various secondary 

effects (on ventilation, sleep, metabolism, weight, glomerular filtration, etc.)[8-12]. Unfortunately, 

pediatricians have little knowledge about the actual occurrence of these effects, which appears to 

be widely variable from an individual to another. To balance treatment benefits and adverse 

effects, pediatricians try to keep caffeine blood concentration within a ``therapeutic" interval. 

This is checked via blood sampling. Since sampling blood causes trauma on such fragile infants, 

the number of blood samples is limited. Therefore, it is not possible to collect extensive 

information on caffeine concentration time course in a given patient and pediatricians refer to a 

standard protocol of administration[13, 14]. In doing so, they control treatments or times to sample 

``on average" in the patients' population. The aim of this paper is to define a PK model to be used 

as a basis for a medical decision tool to help pediatricians in individualizing caffeine 

administration. The developed PK model allows the predictions of caffeine time-course in a new 

patient for whom only easily collected covariates (duration of gestation and body mass at birth), 

and possibly, a few caffeine concentration data would be available. For this, we need to take 

advantage of all available information: data extracted from medical files, pediatricians' 

experience and published data on neonate physiology and caffeine population pharmacokinetics[1-

3]. In this context, a Bayesian approach is efficient, as it allows an easy aggregation of such 

widely different and uncertain information sources[15-17] and naturally allows sequential learning.  
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To describe caffeine concentration in blood, a compartmental PK model which is an extention of 

the one proposed by Amzal et al. [18] , is proposed. As caffeine is hydrophilic and distributes in 

body water[19], our pharmacokinetic model has only one compartment. Its main parameters are 

the volume of distribution and the caffeine clearance. Moreover, as volume of distribution 

(depending on the amount of total body water) and metabolism change significantly during the 

few weeks of the treatment[20-22], we propose a dynamic model with time-dependent parameters. 

To take into account inter-individual variability, a hierarchical population model is defined and 

calibrated using historical data.  

As caffeine elimination is widely variable in infant populations[1-3], a more efficient PK model 

need to integrate new information on the treated patient. We show here how caffeine 

concentration predictions of the treated patient can be updated by running a particle algorithm 

using recorded body mass and/or caffeine concentration data. The proposed algorithm has the 

advantage to update both individual and population parameters on the basis of new individual 

data. Therefore there is no need to re-perform time-consuming calibration process to estimate 

new population parameters when incorporating this new information.  

To our knowledge, any tool for caffeine dose individualization is not used in pediatric services, 

until now. Even if methods for dose individualization have been proposed in the literature for 

other drugs[23-25] none has been applied to caffeine dosing. We show here how a population 

pharmacokinetic model can be calibrated using a particle algorithm in order to guide individual 

caffeine dosing in a reasonable time. Formal optimization of the treatment is not treated; we refer 

to Amzal et al.[18] and references therein for details on that question. 

 

In the present study, we start by the modeling of the caffeine bio-distribution, explaining how 

physiological parameters evolve with time. The following section is devoted to defining the 
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statistical model, to quantify sources of uncertainty. It also describes the Bayesian framework in 

which the inference problem is casted, recalling its principle and defining the chosen prior 

distributions. The next section details the model checking and model adequacy procedures used. 

We demonstrate, in the last section, how the model predictions can be sequentially updated with 

incoming data on new treated patients, and how this can be used for designing a medical decision 

support software. Finally, this approach and its results are discussed and put in perspective. 

Methods 

Pharmacokinetic Data 

The pharmacokinetic data come from medical files of 35 neonates treated in the Neonatal Unit 

and Intensive Care of the Pediatric Department of the Hospital of Amiens (France). These files 

are the only available in the set of medical files of the neonates admitted in the nursing care 

department during years 1998, 1999 and 2003. Files were pre-selected such they meet the 

following requirements: 

- contain at least one caffeine concentration measurement, 

- the treatment lasts 3 days at least, 

- the treatment goes at least until the post  conceptional age of the neonates is 35 weeks. 

 

The typical treatment administered to neonates consists of a charging injected dose of 20 mg/kg 

possibly spread out on the first two days, then a regular oral dose of 5 m/kg every day from the 

third day. The treatment usually lasts until the post conceptional age of the neonates reaches 35 

weeks. Naturally, these doses could have been modified by the pediatricians for clinical reasons. 

Observed concentrations of caffeine in blood were collected as requested by the physician. It 

does not exist any sampling scheme (see Figure 1). 
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[Figure 1 about here] 

For each patient, the extracted data Yt consisted of one to four concentrations of caffeine 

measured in blood after specific treatment X (timing, injected concentration or quantity given per 

os,) and measured daily body masses, Mt. An example of collected data (for two patients) is given 

in Figure 4; the observed caffeine concentrations in blood for all patients are represented on 

Figure 1. Covariates such as duration of gestation A0 and body mass at birth M0 were also 

recorded. These data are available upon request. 

 

The average of the body masses at birth for our neonates population (N=35) is 1.34 kg with a 

standard deviation of 0.35 kg. The smallest recorded masse at birth is 0.660 kg while the largest 

is 2.170 kg. The duration of gestation of these premature neonates is 29.1 weeks long on average 

(with a standard deviation of 2.1 weeks and a range of [23, 32] weeks of gestation). 

A Dynamic Model of Caffeine Biodistribution in PrematureNeonates 

One-Compartment Caffeine PK Model 

According to published pharmacokinetic studies[1-3], caffeine distribution in the body is well 

described by a one-compartment model[19]. The body is therefore modeled by one homogeneous 

compartment of volume V(t) at time t. Note that the time origin (t=0) corresponds here to birth 

time. Caffeine is eliminated from the central compartment with clearance CL(t).  The time-course 

of caffeine concentration c(t) (in mg/L) is therefore described using a first-order elimination. 

Input drug is modeled as an IV bolus using a zero-order absorption even in case of oral dosing 

(the assumption here is that absorption is very rapid). This assumption is made because necessary 

data to identify absorption rate are incomplete. 
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Body Mass Model 

From simple examination of the body mass data, it appears that the growth of premature neonates 

can be, in a first approximation, divided into two distinct periods. The body mass decreases 

during the first period of length Ĳ, while it subsequently increases during the second period. We 

propose linear relationships to describe that variation during the two periods. These functions 

depend on the covariates M0 (body mass at birth), A0 (post-conceptional age at birth supposed 

exactly known) and are specific to each individual:  

tif)(

tif)(
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where α1 and α2 are the slopes of the straight line respectively decreasing and increasing of each 

phases. MĲ corresponds to the body mass at Ĳ ( 10MM ). 

Volume of Distribution Model 

The volume of distribution is assumed to vary linearly with body mass: 
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ftMtV

TtAftMtV
 

where f25 is defined as the ratio of the distribution volume over body mass at  post-conceptional 

age 25 weeks (time T25) and fĲ is the value of that ratio at time Ĳ (
M

V
f

)(
). ȕ is the slope of the 

variation of the volume-over-mass ratio as a function of time. It is defined as follows: 
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The slope ȕ is set such as the ratio volume over mass at post-conceptional age 25 weeks is f25 and as the 

ratio volume over mass at Ĳ is fĲ. As the degree of plasma protein binding is quite low for caffeine[26] , the 
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volume of distribution is assumed comparable to total body water. In this case, f25 and fĲ are approximately 

equal to fraction of water at time T25 and Ĳ. 

 

Clearance Model 

Several authors showed an increase in elimination of caffeine with postnatal age[21, 27, 28]. 

According to all of them, caffeine elimination increases as a function of time and reaches a 

plateau after 3 to 4.5 months. Taking into account the duration of treatment (less than two months 

in general), we only modeled the first period and assumed that caffeine clearance increases 

linearly with time with a slope parameter γ and a constant at origin (t=0) CL0: 

.)( 0 tCLtCL  

Statistical Model 

The statistical model quantifies both uncertainties (on data measurements as well as modeling) 

and sources of variability. Data measurements as well as modeling and intra-individual variability 

errors are taken into account by using a measurement error model. To model uncertainty on 

parameters and their variability, probability distributions are used. Inter-individual variability is 

quantified in the framework of a population model[29, 30] by estimating its population parameters. 

Given the above bio-distribution model, the caffeine concentration in blood of a given patient is 

conditioned by the covariates M0 and A0 and the parameter vector ).,,,,,,( 02521 CLff  

Measurement Error Model 

The caffeine concentration in blood actually observed is affected by measurement errors which 

are assumed to be independent and log-normally distributed with a geometric mean of one and a 

geometric standard deviation ıc. Likelihood is then given by: 
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cXFNY )),,(log(~)log(  

where the function F corresponds to the PK model described above.  

A normal distribution (with zero mean and standard deviation ıM) measurement error model is 

also specified for body masses Mt: 

MtMNtM ),(~)(  

To take into account inter-individual variability of body masses (due, for example, to urinary 

excretion), the standard deviation of measured body masses has been considered as individual-

specific. It has been chosen as depending on the body mass of the neonate and on the individual 

parameter cvM: 

tMM Mcv  

Population Model 

The pharmacokinetic model has been embedded in a population model which considers that each 

subject parameter values θ are drawn from a statistical distribution G with given population mean 

μθ and variance ıθ (Figure 2). 

[Figure 2 about here] 

The proposed population model has two major components: the individual and the population 

levels. At the individual level, parameters θ are assumed to be normally or log-normally 

distributed (see Table I) with population means μθ and standard deviations ıθ. Truncation bounds 

of the distributions are set on the basis of the limits for plausible values. For each subject, the 

expected values of body mass and caffeine concentration in blood are a function F of 

administration X, depending on parameter θ, and the individual's covariates. At the population 

level, cvM is assumed to be distributed according to a truncated normal distribution with mean 

μcvM and standard deviation ıcvM (Table I).  
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 [Table I about here]  

Bayesian Inference via MCMC 

The Bayesian framework 

The population model described above is fitted to observed data, Yt, with Bayesian techniques[16, 

17]. The Bayesian approach yields a sample θ of parameter values from their joint posterior 

distribution. From Bayes' theorem, the joint posterior distribution of parameters is proportional to 

the prior distributions of parameters multiplied by the data likelihood. The posterior is then an 

update, using collected data, of what it is known about parameters prior to the experiment. 

Prior Distribution 

The first step of the Bayesian approach consists in defining prior distributions that quantify the 

information coming from pediatricians expertise or from the scientific literature. Expertise of 

clinicians is then entered in the model through its structure and through the use of prior 

distributions parameters. Prior distributions on population parameters and their associated 

parameters are summarized in Table I. On the basis of available information, we specify a prior 

that covers the range of value that is deemed reasonable for each parameter. When we deal with 

mean parameters, we use truncated normal or uniform distributions as prior while for standard 

deviation parameters truncated lognormal or loguniform laws are used. For standard deviations, 

lognormal prior distributions are chosen when little prior knowledge about the parameter is 

available. For parameters on which no prior information is found, loguniform distribution is used. 

This distribution is preferred to the more standard Inverse Gamma distribution since it does not 

require to define mean and variance (as Inverse Gamma does) and only uses truncation bound. 
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For parameters related to body mass (α1, α2, Ĳ), priors are elicited[31-33] by encoding the 

pediatricians' knowledge. From their experience, neonates loose, on average about 25g/day 

during between the 3 to 20 first days, then gain bout 25g/day. This is used to build priors on 

,,
211

. Information on ,,
211

, are less easily elicited and rather flat priors are 

used.  

Since the degree of plasma protein binding is quite low for caffeine, we assume that the ratio 

volume over mass is approximately equal to fraction of body water. Thus, for f25 and fĲ, priors are 

proposed after referring to the percentage of water in body reported by the International 

Commission on Radiological Protection[20]. For parameters related to clearance, CL0 and γ, prior 

distributions are defined after re-parameterization of values from the literature[1-3]. Globally, all 

the previous studies agree and give the same magnitude order for the mean of the clearance at 

birth, 
0CL  (estimated between 0.006 and 0.03 L/h with an estimated standard deviation around 

0.003) and for the shape of temporal evolution of clearance (estimated between 1e-6and 5e-5 

with an estimated standard deviation around 3e-6). We have chosen mean of 
0CL and such 

they are a compromise between the published studies. To be not too restrictive and to take into 

account possible differences between studied populations, standard deviations are chosen a bit 

higher than those estimated in the literature. Population variance of clearance parameters ( 2

0CL  

and 2 ) are assigned prior distributions truncated between 1.1 and 3 corresponding to a 

population variability comprised between 10 and 300%: less than10 % of variability for a 

clearance parameter in the population seems incredible and 300% seems large enough since inter-

individual variability of caffeine clearance was estimated to be around 80% for adults [34] and is 

likely a bit larger for neonates. 
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Use of data for model calibration and adequacy checking 

The data are used to calibrate (fit), check and assess adequacy of the model. The adopted 

approach for model adequacy checking is cross-validation [35, 36]. To that effect, data files are 

divided into two groups: the training set and the test set.  

We start with the training set for model calibration (estimation of the different parameters) and 

checking the fits. Then, next we use the calibrated model to check its adequacy with respect to 

the test set. We also perform another evaluation of the model which consists in calculating the 

percentages of caffeine concentration and body mass data points from the test set falling within 

different credibility intervals for predictions. The results of these tests are discussed further 

below.  

Both sets of data are formed by a random binomial assignment with parameters equal to (p=1/3, 

N=35). Twenty-four medical files are drawn for the training set (calibration and checking the fits) 

and the other eleven files are assigned to model adequacy checking (test set). 

This process allows us to validate the model. Once this is done, we recalibrate the model using 

the full data set (35 subjects) to take into account all available information in our prediction 

procedure. This recalibration step gave what we call in the sequel, original posterior distribution. 

Model Calibration via MCMC 

We assessed the model parameters by sampling their values from the joint posterior distributions 

of all population and individual parameters, using the data from the 24 training set subjects. For 

this, we used Markov Chains Monte-Carlo simulations[37, 38] (Metropolis-Hastings sampler) 

performed by MCSim software[39] version 5.0.0. After 40,000 iterations of 3 parallel Markov 

chains, their convergence is checked by calculating the Gelman and Rubin R̂  ratio on the 20, 000 

last iterations[16]. The highest R̂  computed is 1.12, showing that all chains had approximately 
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converged. To get a sample from the targeted posterior distribution, we took one in 10 vector out 

additional 20,000 iterations of each chain after convergence checking (iteration 40,000 to 60,000) 

leading to a posterior sample of 6,000 parameter vectors. Running the three MCMC chains took 

about one day (on a pentium 4, microprocessor PC 2.8GHz). 

Sequential Updating 

For an incoming subject (just after birth), parameters can be guessed on the basis of population 

distribution (i.e., by sampling from those distributions). However, when data are collected on a 

subject during treatment, the parameters for that individual can be updated. For parameter 

updating, it is possible to re-perform the calibration process described above using all available 

data including the newly recorded ones. This involves re-running Markov chains. But this 

procedure is not applicable in practice by pediatricians because it is time-consuming. Thus, we 

propose to apply a particle algorithm[40-43] to sequentially update the posterior (individual and 

population) parameter sample obtained by calibration (original posterior). Since they start from 

the original posterior rather than from the priors of Table I, calculations converge faster than the 

classical calibration procedure[44]. Individual parameters and population parameters can be jointly 

and quickly updated. Other alternative methods to standard MCMC calibration have been 

proposed (MAP Bayesian, Multiple Model, and Interacting Multiple Model)[29, 45] to update 

predictions of the new patient. Our method generalizes MAP approach (consider the whole 

distribution instead of maximum a posteriori) and allows the updating of population parameters 

which was not proposed with MM or IMM methods, to our knowledge. The updating of 

population parameters would allow predictions on another future patient using the information 

brought by the incoming one. 



17 

The proposed updating method assumes that a current sample is available and consists in few 

steps. Call (θ1, ..., θN) our original posterior sample of parameters, which approximate a 

distribution p(θ), and let's denote y the new coming data. Each θi is also called a "particle" in this 

framework. We want to transform our sample into an another one (of same size N) from p(θ|y). 

The detailed updating algorithm can be described as follows:  

 For each particle i=1..N, compute its normalized weight wi (as in the Sampling 

Importance Resampling scheme of Rubin [46, 47] 

)(
)(

)(
i

i

i
i yp

p

yp
w  

These weights are easy to compute since they take the form of likelihood terms 

normalized by the sum of all likelihood. 

 Resample N particles (θ’1, ..., θ’N) from (θ1, ..., θN) according to the multinomial 

distribution M(N,w1,...,wN) 

 To avoid degeneracy problems, enrich the sample using a Markov kernel Q whose 

stationary distribution is p(θ|y). For each i=1..N, we draw (θ’’1, ..., θ’’N) from 

(θ’1, ..., θ’N). By definition, this transforms an approximated sample (θ’1, ..., θ’N) from 

p(θ|y) into another sample (θ’’1, ..., θ’’N) from p(θ|y), but now richer (more diverse). This 

final sample is the updated parameter sample. 

A convenient choice for the Markov step Q is a Metropolis-Hastings move as used in standard 

MCMC [37, 38]. We chose a Metropolis-Hasting step with an independent sampler [48] in which 

candidates for population parameters are drawn from the original posterior sample and individual 

parameter from population distribution. To perform updating procedure, we use Matlab software.  
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Results 

Posterior Distributions 

The MCMC-calibrated model has been first checked by analyzing the initial posterior vectors' 

sample (data not shown, see Table II for a summary of final posterior estimate). 

Means of mass model parameters μα1 and μαβ were quite well appraised a priori by the experts, 

but calibration has decreased the standard deviation of these two parameters. Premature neonates 

lose, on average, 30 grams per day until the end of the sixth day, then gain, in a second period, 23 

grams per day on average. Body mass loss and the length of time during which decrease occurs 

are quite variable between individual (around 40% for both). The values of body weight gain are 

less variable in this population (around 25%).  

Posterior means of the population parameters related to the volume of distribution (μf25  and μfĲ) 

are close to the priors. This is partly due to the very informative nature of the prior distribution 

for these two parameters. The mean of the volume-over-mass ratio in population is equal to 85% 

at post-conceptional age 25 weeks and 75% at time Ĳ. In parallel, calibration has increased 

knowledge on population variability (The CVs of ıf25 and ıfĲ decreased from 20% to 16.3% and 

15.3% respectively). 

On average, clearance at birth is about 0.3 L/day. For our neonates (mean body mass: 1.340 kg 

and mean distribution volume: 85% of mass), the half-life of caffeine is t1/2=2.6 days. Clearance 

at birth, CL0, and slope of the temporal linear evolution of clearance, γ, are quite variable in this 

population (CV of CL0 about 27% and CV of γ equal to 77%). 
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Model Fit Checking 

Figure 3 shows model-predicted values using the joint maximum posterior parameter vector 

versus their observed counterparts. 

[Figure 3 about here] 

The posterior sample gives quite a good fit to the body mass observations. The average of the 

relative errors for mass is about 0.1% with a minimum around -12.4% and a maximum of 14%. 

Predicted caffeine concentrations in blood are not that good; the relative error is 8.5% in average 

with a minimum and a maximum respectively equal to -108% and 48%. Figure 4 shows the 

average of predicted caffeine concentrations and body mass predictions over time, for one subject 

of the training set (Subject 9). As already observed on Figure 4, model predictions well describe 

the data. 

[Figure 4 about here] 

Model Adequacy assessment 

Using the posterior sample, for each patient of the test set, mean curve and 90%-credibility 

intervals for predictions of body mass and caffeine concentration have been constructed (from 

Monte Carlo simulations) as a function of time (Subject 2 is the only plotted on Figure 4). For all 

the subjects of the test set, most of the caffeine concentration data fall in the credibility interval 

and body masses data are well estimated. 

The empirical percentages of data points falling within different credibility intervals are close to 

the credibility percent coverage (last line of Table III), showing that the shapes of the statistical 

distributions chosen to model measurement errors are appropriate. The fact that observed 

percentages for caffeine concentration tend to be lower than the theoretical ones in the tails could 
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be explained by the small number of caffeine concentration data points available in the test set 

(N=21 for 11 subjects). 

Comparison of Predictions from Previously Published Caffeine PK Models 

Three population PK models for caffeine have been previously proposed [1-3]. Caffeine 

concentration predictions for data belonging to the test set are made using these three models. 

Two of these models (Lee's and Falcao's) cannot predict body masses of neonates. Using set body 

masses (as observed at birth, for example) would be very penalizing for these models, so we 

choose to use the actually measured body masses, which is to their advantage. Monte Carlo 

simulations are run on the basis of the published parameter distributions to obtain credibility 

intervals on caffeine concentration predictions. For each model previously proposed average 

mean square errors (AMSE) and percentages of adequacy data points falling in different 

``theoretical" credibility intervals are given in Table II. 

[Table II about here] 

Our model better assesses uncertainty on caffeine concentration predictions: observed 

percentages of data points falling in the ``theoretical" credibility intervals are better than those 

obtained with previous models. These models have higher bias or over-dispersion (higher AMSE) 

than our model. Relative residuals (
obs

obs

Y

YY
,Yobs observations and Y  the estimate) of each model 

are plotted against postnatal age on Figure 5. It appears that our model gives a systematic 

prediction error at early time point (between the third and the eighth day of treatment). This point 

is discussed further below. However, most of the times, the proposed model gives better mean 

predictions than the other models for this data set. 

[Figure 5 about here] 
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Recalibration 

Again, three chains of 60, 000 iterations are run. One out of 10 of the last 40, 000 simulations of 

the three chains are recorded, yielding 12, 000 parameter sets. The Gelman-Rubin convergence 

diagnostic is less than 1.06 for all parameters. Using this very final sample, summary statistics for 

marginal posterior distributions of the population parameters are given in Table III. 

[Table III about here] 

Compared to posteriors obtained during the first calibration step (involving 24 subjects), the 

estimates have not drastically changed. Estimated statistics (means and standard deviations) of 

population parameters have changed by less than 33%. Parameters related to α1 and CL0 are the 

most significantly updated. μα1 is higher than previously; ıα1, μCL0 and ıCL0 have also increased. 

The estimated uncertainty of these parameters is slightly higher than after the initial calibration 

step. This is due to fact that the estimates of the individual parameters CL0 and α1 for the subjects 

of the test set are not fully centered in the previous population distribution.  

Sequential Updating of Predictions Using Sequential Incoming Data 

Obviously, more accurate predictions and credibility intervals would arise from taking into 

account the incoming data (body masses, blood samples, etc.) about subjects as they are clinically 

followed. This sequential update can easily be performed by correcting the previous posterior 

distributions using the new data. Since this update would not induce a drastic change, it is not 

necessary to run new MCMC chains. We demonstrate here the use of an efficient way to do it via 

particle methods[40].  

Let us illustrate the method through an example. Sequential updating is performed for patient 31 

(of the test set). We examine how different kinds of data can improve caffeine concentration 

predictions. The update is first done using mass data, then using caffeine concentration data. The 
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update could also be done with both kinds of data (mass and caffeine concentration data); the 

procedure would be same. Performing update with body mass data and caffeine concentration 

data separately allows to illustrate how informative caffeine concentration data are in comparison 

with body mass data.  

Neonate 31 is born at A0=30 weeks, with body mass M0=1.575kg. The daily body masses were 

measured during the 9 first days of treatment (Figure 6). The update is implemented first on the 

basis of recorded mass, using an original posterior sample of size of 12,000. An updated 

parameters sample is then obtained.  

The updated posterior distributions for α1, α1 and Ĳ are more accurate than the initial guess. Body 

masses dramatically increase knowledge about the time evolution pattern of mass for the patient. 

Figure 6 shows, for that subject, the predicted masses generated from the original posterior 

sampled parameters (panel A) and the predictions generated from updated parameters (panel B). 

Masses are clearly much better predicted in panel B. This updating procedure took about sixty 

seconds (on a pentium 4, microprocessor PC 2.8GHz running Windows XP), whereas running the 

three chains of the calibration procedures took about one day. The proposed updating procedure 

is about 1500 time faster than MCMC initial calibration. 

[Figure 6 about here] 

It is interesting to see how update can improve caffeine concentration predictions. Caffeine 

concentration in blood was measured for this subject on the third day of treatment (c=5.2, mg/L). 

The predictions derived from the original posterior distribution are quite bad (Figure 7A) and the 

predictions obtained from updated sample using the only body mass data are not good either 

(Figure 7B). Whereas predictions for masses are much better after mass parameter updating 

(Figure 6), caffeine concentration predictions on Figure 7B seems unchanged (the distribution 

tails below 5%tile and above the 95%tile do change in fact).  
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The same updating method is then performed using only the caffeine concentration observation 

(Figure 7C). The concentration data now falls within the 90%-credibility interval and the mean 

estimate (9.7 mg/L) is also nearer the data after updating than before (17.6 mg/L). The 

concentration data is very informative relatively compared to the original posterior, especially on 

clearance, as expected. The gain on precision of predictions brought by the updating using 

caffeine concentration data can be measured by comparing the spread of the 90%-credibility 

interval on caffeine concentration predictions before and after the update. The mean range 

between the lower and the upper bounds of the credibility interval (respectively corresponding to 

the 5th and the 95th %tiles) is equal to 26.2 mg/L before updating, 25.9 mg/L after updating 

using mass data and has been reduced to 13.2 mg/L after updating using caffeine concentration 

data.  

[Figure 7 about here] 

CL0 marginal updated distribution for individual'31 has been transformed (in shape and mean) 

after updating (the mean of CL0 has changed from 0.017 to 0.033 and the standard deviation has 

staid around 0.008). On the other hand, Ȗ distribution has not been much revised (the average of Ȗ 

has changed from 1.043x10-5 to 1.087 x10-5 and the standard deviation from 0.889x10-5 to 1.020 

x10-5).  

An important concern is to decide when to update the distributions. It would not be optimal to do 

it every day, for example after each body weight measurement, because of the low sensitivity of 

caffeine elimination parameters to those measurements. A pragmatic general answer can be found 

in Chopin 2002 [40]. In our case, a reasonable choice might be to perform the updating as soon as 

the observed body mass goes out of the predictions' (90%) credibility interval. Moreover, since 

the caffeine concentration data are strongly informative, it seems that update should be done after 

each new caffeine concentration measurement. 
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The updating procedure improves predictions for an individual as new data are collected, and 

thus, allows to guide dosing for this particular patient taking into account all its physiological 

characteristics (given by the covariates and the data). At the same time, this procedure also 

updates the joint population parameters distributions since MCMC calibration produces samples 

from the overall joint distribution of population and individual parameters. Figure 8 shows 

histograms of the marginal updated distributions for population mean and standard deviation of 

CL0 and Ȗ. As only one caffeine concentration data point on one subject has been used to update 

these population parameters, their distributions have not drastically changed. σevertheless, μCL0 

and ıCL0  distributions have been slightly translated to the right after updating, corresponding to 

greater values. This is coherent with the high value of CL0 for that individual. On the other hand, 

ıȖ distributions before and after updating shows that ıȖ has been slightly reduced because the 

estimated Ȗ for the new subject is well centered with the original population distribution. 

[Figure 8 about here] 

Discussion and Perspectives 

The present study aimes at providing the methodological basis for a quantitative decision support 

software for pediatricians who would like to anticipate neonates' caffeine concentration in blood, 

for a given treatment. Fitting a population model to individual data allowed us to make 

predictions for new subjects, given their covariates at birth, and a sample of random vectors of 

parameters from the posterior population distribution. These simulations give an ``average 

prediction" for future caffeine concentrations during treatment, as well as credibility intervals for 

them. We present a fast and easy way to update those predictions on the basis of subject specific 

data on body mass and caffeine concentration in blood. 
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Three caffeine distribution population models have already been proposed[1-3]. Thomson et al.'s 

model assumes that clearance depends on body mass at birth and does not account for mass 

changes over time. Similarly, caffeine distribution volume is also assumed to stay constant during 

treatment period. Making predictions over weeks, in such a context, can be misleading since the 

physiological variable of the premature neonates change significantly during the first trimester of 

life. Falcao et al. and Lee et al.'s models consider parameters (clearance and volume) as dynamic 

but requires infant body mass values at the time at which caffeine concentration is to be 

predicted. Lacking a body mass model, such models cannot be used for predictions over several 

days or weeks. However, even with a perfect mass model (i.e. using actually measured body 

masses), these two models do not give predictions as good as those of our new model (see Figure 

5). Overall, the model we propose gives the best predictions for our neonate population. Two 

points need however to be stressed: 

 Its mean predictions are still quite far from some data points (7 over 21 relative residuals 

errors are over 50%) revealing that the model might still be improved. Moreover, relative 

residual errors show a trend with post-natal age. Predictions of all four models over 

estimates just after birth and underestimats after about 25 days of postnatal age (Figure 5). 

This implies the models are not able to capture all information contained in the data.  

 Our model works quite well with local (Amiens) neonates. We do not know if it would be 

the best at describing Thomson's, Lee's or Falcao's data. We would recommend for a new 

calibration when going to new populations. 

 The population variability in caffeine clearance is relatively large and is the cause of the 

relatively large width of credibility intervals for the caffeine concentration predictions. This 

actually reflects the daily reality met by physicians. Part of this variability might be explained by 

introducing covariates which have not been taken into account here (as caffeine or tobacco 
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maternal consummation during pregnancy, other administered treatment than caffeine, for 

example). 

Another improvement could concern the model itself, and more precisely the absorption model. 

We made the assumption that oral absorption is very rapid. This is questionable. Not describing 

precisely the absorption process could generate errors in predictions at early time points. Given 

that misspecification the model could over-estimates the speed of caffeine bioavailability after 

the third day (beginning of per os administration). This over-estimation could lead to an under-

dosing over that period. A first-order oral absorption model might be better in this situation. 

However, after about the eighth day, caffeine absorption by oral route seems more or less quite 

well represented with a zero-order absorption rate (see Figure 5). We also made some choices 

which could be reconsidered, such as the linear form for the temporal evolution of physiological 

parameters, or the relative error to model the intra-individual variability in the body mass. Non-

parametric modeling[49, 50] of population distribution could also be an interesting approach. Non-

parametric models would relax hypotheses on parameter distributions. They could allow 

identification, for example, of bimodal population distributions, which could help in determining 

new explanatory covariates.  

As different updating methods exist, it could be interesting to compare the different approaches 

of sequential updating (MAP Bayesian, Multiple Model, and Interacting Multiple Model). It 

would also be interesting to compare our method to other ones[23-25]  already proposed for dose 

individualization by applying them to caffeine dosing, for example.  

A therapeutic dosing support tool should incorporate a sequential updating procedure such as the 

one detailed before. Admittedly, our procedure needs to be tuned (jump function, number of 

particle)[40] but it is fast, automatic and can be programmed easily in a medical support tool 

(currently under development). The only requirement for the user is to enter the newly collected 
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data. The pediatrician does not need to know details of modeling or statistics. The therapeutic 

support tool would, then, give individualized predictions on the basis of information collected on 

the treated patient. The updating using caffeine concentration data can give better estimate (less 

biased) and as the same time, reduce the spread of credibility interval of caffeine concentration 

predictions (by around a factor 2, in our example). The proposed particle algorithm allows to 

quickly update individual parameters distribution. Moreover, population parameters distributions 

are updated simultaneously so that all available information from past or current patients will be 

available for any new subject entering the hospital.  

To validate the benefit of the use of such a pharmacokinetic tool, a clinical trial could be based on 

a judgement criteria including observed effects after the comparison of two patient groups: one 

receiving the usual dosing and another one for which the dosing is assisted by the software tool. 

Finally, this technique was applied to caffeine as a demonstration study but could also be applied 

to other drugs with a narrower therapeutic window. Indeed, that would be all the more useful. 

Drugs for which the target serum concentration is close to the concentration limit leading to 

severe adverse effects, would certainly benefit to this method since it allows a quick and 

individualized estimation of the drug concentration using a limited number of measurements. 
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Tables  

Table I: Parameter distributions of our PK model. Summary of the parameter distributions at 

individual level of the PK model and population prior distributions used in the calibration 

process.  

Parameter (unit) Distribution Truncation bounds 

Individual level   
 α1 (kg/h) Normal (μα1, ıα1) [-5x10-3 ; 0] 
 α2 (kg/h) Normal (μαβ, ıαβ) [0 ; 3x10-3] 
 Ĳ (h) LogNormal1 (μĲ, ıĲ) [72 ; 480] 
 f25 (L/kg) LogNormal1 (μf25, ıf25) [0.8 ; 0.9] 
 fĲ (L/kg) LogNormal1 (μfĲ ;  ıfĲ) [0.7 ; 0.8] 
 CL0 (L/h) LogNormal1 (μCL0, ıCL0) [0  ; 0.06] 
 γ (L/h2) LogNormal1 (μȖ, ıȖ) [5x10-7  ; 10-4] 
 cvM (unitless) Normal (μcvM, ıcvM) [0.010; 0.100] 
Population level   
 μα1 (kg/h) Normal (-10-3 , 0.6x10-3) [-5x10-3 ; 0] 
 μαβ (kg/h) Normal (10-3 , 0.5x10-3) [0 ; 3x10-3] 
 μĲ (h) Uniform [72 ; 480] 
 μf25 (L/kg) Normal (0.85 , 0.05) [0.8 ; 0.9] 
 μfĲ (L/kg) Normal (0.75 , 0.05) [0.7 ; 0.8] 
 μCL0 (L/h) Normal (0.02 , 0.01) [0 ; 0.04] 
 μȖ (L/h2) Normal (5x10-6 , 5x10-6) [5x10-7  ; 10-4] 
 ıα1 LogNormal1 (0.4x10-3 , 2.96) - 
 ıαβ LogNormal1 (0.4x10-3 , 2.96) - 
 ıĲ LogNormal1 (1.32 , 2.30) [1.01 ; 2] 
 ıf25 LogNormal1 (1.183 , 1.22) [1.01 ; 2] 
 ıfĲ LogNormal1 (1.183 , 1.22) [1.01 ; 2] 
 ıCL0 LogUniform [1.1 ; 3] 
 ıȖ LogUniform [1.1 ; 3] 
 μcvM (unitless) Uniform [0.010 ; 0.100] 
 ıcvM Normal (0.030 , 0.020) [0.005 ; 0.100] 
 ıC Normal (1.105 , 0.1) [1.01 ; 2] 

1 For LogNormal distributions, the parameters in parenthesis correspond to the geometric mean 

(exponential of the mean in log-space) and geometric standard deviation (exponential of the 

standard deviation in log-space).  
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Table II: Indicators to compare the existing PK models. Average mean square error (AMSE) 

and percentages of adequacy data points falling within the ``theoretical" credibility intervals 

given by various models. These data points concern caffeine concentration of the subjects 

belonging to the test set. 21 data points are available for caffeine concentration in blood. 

Model 
Nominal credibility interval coverage (%) 

AMSE 
40 50 80 85 90 95 

Thomson's et al. 4.8 4.8 33.3 33.3 38.1 38.1 1.358 

Lee's et al. 9.5 9.5 14.3 28.6 42.9 47.6 2.207 

Falcao's et al. 9.5 14.3 42.9 42.9 47.6 57.1 2.036 

New proposed model 48.2 52.4 61.9 71.4 81.0 81.0 0.411 
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Table III: Summary statistics for the ultimate (N = 35 subjects) marginal posterior 

distributions of the population parameters. 

 

Population parameters mean SD 2.5%tile 97.5%tile 

μα1  0.00101 0.000174 0.00129 0.000592 

μαβ  0.000948 4.21x10-5 0.000864 0.00103 

μĲ 130 15.9 96.3 159 

μf25 0.85 0.0215 0.808 0.892 

μfĲ 0.752 0.0213 0.708 0.793 

μCL0 0.0154 0.00183 0.0121 0.0192 

μȖ 8.45x10-6 2.43x10-6 4.02x10-6 1.35x10-5 

ıα1 0.000676 0.000146 0.000464 0.00103 

ıαβ 0.000237 3.19 x10-5 0.000185 0.000309 

ıĲ 1.6 0.145 1.38 1.93 

ıf25  1.21 0.2 1.0 1.69 

ıfĲ 1.21 0.199 1.01 1.7 

ıCL0 1.54 0.198 1.2 2 

ıȖ 1.91 0.456 1.17 2.86 

μcvM   0.0179 0.00462 0.0105 0.0269 

ıcvM 0.018 0.00332 0.012 0.025 

ıC  1.36 0.0483 1.28 1.47 
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Figure 1: Observed caffeine concentrations in blood as a function of postnatal age. Joined points 

indicate observations belonging to a same individual. 
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Figure 2: Directed acyclic graph of the hierarchical statistical model. Symbols are: P, prior 

distributions; μθ, population mean parameters; ıθ, variance of population parameter; t, 

observation times; θ, unknown  parameters; A0 and M0 are respectively gestational age and body 

mass at birth (both supposed exactly measured); X, the administered treatment; Mt, the measured 

body mass at time t; cvM, the variation coefficient of masses and Yt, the measured caffeine 

concentration in blood. μcvM, and ıcvM are respectively for mean and variance of cvM parameters 

and ıc for the variance of the experimental measurements. F is the dynamic bio-distribution 

model. Square nodes are for variables of known (or supposed known) values; circular nodes for 

unknown variables and the triangle represents a deterministic link. 
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Figure 3: Data versus model predictions. The left and the right graphs respectively concern body 

masses and caffeine concentrations in blood for individuals of the training set. On the right side 

graph, each line segment describes the 90%-credibility interval associated to the corresponding 

prediction. The 90%-crediblity intervals have been plotted using ıc value of the maximum 

posterior vector. 
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Figure 4: Caffeine concentration in blood (left) and body masses (right) as a function of time. 

Predictions have been calculated for one subject of the training set (Subject 9) and one subject of 

the test set (Subject 2). Means of the predictions are in bold lines, and the corresponding 90%-

credibility intervals are plotted with thin lines. Data are represented by dots. Note that 90%-

credibility interval of the predicted masses is not represented for the subject of the calibration set 

(subject 9) as it was very thin. 
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Figure 5: Relative residuals for caffeine concentration as a function of postnatal age. Four 

different models are represented: Thomson et. al. [1] (triangles), Lee et. al. [2] (squares), Falcao et. 

al. [3] (empty circles) and the one we propose (plain circles). Relative residuals correspond to the 

relative differences between training set data points and mean caffeine concentration predictions 

obtained by Monte Carlo simulations. 
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Figure 6: Body mass predictions as a function of the time for patient 31. The 5 %, and 95 % 

quantiles of predictions are plotted using gray lines, the mean of predictions using dark bold 

lines. Data are represented by the dots. Panel A shows the predicted masses  calculated from the 

original posterior-sampled parameters, using the covariates of the patient at birth, only. 

Predictions of panel B use, in addition, body mass data via the updated posterior parameters 

obtained by a particle algorithm. 
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Figure 7: Caffeine concentration predictions as a function of time for patient 31. The 5 % and 95 

% quantiles of predictions are plotted using thin lines, the mean of predictions using bold lines. 

The data point is represented by dot. Panel A shows the predicted caffeine concentration in blood 

calculated from original posterior sampled parameters and using only the covariates of the 

patient. Predictions of panel B and C are performed using the posterior parameters updated via a 

particle algorithm. In panel B, only data masses were used for parameter updating while only 

measured caffeine concentration was used to update predictions in panel C. 
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Figure 8: Histograms of the marginal posterior distributions of the population elimination model 

parameters. Top row graphs give the marginal distributions of the original posterior. Bottom row darker 

histograms give the marginal updated distributions, using one caffeine concentration data point for subject 

31. Bottom row unfilled histograms recall the original posterior. 

 


