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Abstract 

This study deals with the development of a routine analytical method using gas chromatography-

mass spectrometry with negative ion chemical ionisation (GC/NICI-MS) for the determination of 17 

nitrated polycylic aromatic hydrocarbons (NPAHs) and 9 oxygenated polycylic aromatic 

hydrocarbons (OPAHs) present at low concentrations in the atmosphere. This method includes a 

liquid chromatography purification procedure on solid phase extraction (SPE) cartridge. 

Application of this analytical procedure has been performed on standard reference material (SRM 

1649a: urban dust), giving results in good agreement with the few data available in the literature. 

The analytical method was also applied on ambient air samples (on both gas and particulate phases) 
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from the French POVA program (POllution des Vallées Alpines). NPAHs concentrations observed 

for a rural site during the Winter period are about 0.2-100.0 pg.m-3 in the particulate phase and 

about 0.0-20.0 pg m-3 in the gas phase. OPAHs present concentrations 10 to 100 times higher (0.1-

2.0 ng m-3 and 0.0-1.4 ng m-3 for the particulate and the gas phases, respectively). These 

preliminary results show a good correlation between the characteristics of the sampling site and the 

compound origins (primary or secondary). 

 

Keywords: Polycyclic aromatic hydrocarbons; Nitrated polycyclic aromatic hydrocarbons; 

Oxygenated polycyclic aromatic hydrocarbons; Standard reference material; Gas chromatography-

mass spectrometry; Negative ion chemical ionisation; Atmospheric pollution  

 

1. Introduction and objectives 

 
 PAHs (polycyclic aromatic hydrocarbons) are widespread pollutants. They are emitted in the 

atmosphere by all the combustion sources and they are both present in the particulate and the gas 

phases. They have been particularly studied due to their potential carcinogenic and/or mutagenic 

properties [1]. Both the United States Environment Protection Agency (EPA) and the European 

Environment Agency now focus on sixteen of them as priority pollutants [2,3]. 

  Oxidation PAHs products, such as NPAHs (nitrated PAHs) and OPAHs (oxygenated PAHs), 

seem to be more toxic than their related parent PAHs. NPAHs are formed either by nitration during 

combustion processes or, in the atmosphere, by both gas and heterogeneous phase reactions of 

PAHs with nitrogen oxides initiated by OH• or NO3
• [4-11]. Similarly to NPAHs, OPAHs are 

formed either directly during combustion, or by chemical reaction (photo-oxidation) initiated by 

oxygenated atmospheric oxidants (OH•, O3…) [12,13]. Some of these PAHs derivatives had been 

identified as having a direct mutagenic potency, contrary to PAHs which require a preliminary 

enzymatic activation, yielding their high toxicity [14-17]. Their contribution to the mutagenicity of 
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the ambient air particulate total extract was estimated to be about 50%, using the Ames test 

(mutagenicity on bacteria) [14,18,19]. However, up to 40% of the mutagen potential was attributed 

to NPAHs and more specifically to nitropyrene, dinitropyrene and nitrohydroxypyrene [14]. Even 

though the mutagenicity of OPAHs appear less important on human cells than B[a]P [20,21], their 

relative high atmospheric concentrations (about 1 ng m-3 in the particulate phase) is of primary 

interest [22-24].  

 As a result of analytical time consuming and cost, only few data have been reported on the 

distribution of such compounds in the atmosphere. Unlike PAHs, analyses of PAHs oxidation 

products generally require several purification and pre-concentration steps. It is particularly true for 

NPAHs which are present in very low concentrations in the atmosphere (about 100 pg m-3 in the 

particulate phase for the most abundant compounds). Furthermore, no certified values exist for this 

class of compounds in the National Institute of Standards and Technology (NIST) standard 

reference materials (SRM). Very few studies propose NPAHs concentrations for diesel particulate 

extract (SRM 1975), diesel particulate matter (SRM 1650a), diesel particulate matter (industrial 

fortlift) (SRM 2975) and urban dust (SRM 1649a) [25-28]. To our knowledge, only three articles 

report OPAHs concentrations for SRM 1649a (urban dust) and only for quinones [21, 28, 29]. No 

data exist for the other SRM. 

 The objective of this study was to develop a routine analytical method for the simultaneous 

quantitative determination of NPAHs and OPAHs in complex environmental matrices, using 

GC/NICI-MS and to apply this method to the analysis of SRM 1649a (urban dust) and natural 

ambient air samples (for both gaseous and particulate phases). In order to minimize interferences of 

polar compounds, a liquid chromatography purification procedure on SPE (solid phase extraction) 

cartridge was applied prior to GC/MS analysis. 
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2. Experimental 

 
2.1. Chemicals 

 
HPLC-grade quality solvents were used. Dichloromethane was purchased from Carlo Erba SDS 

(Peypin, France). Isooctane and n-pentane were from Aldrich (St-Quentin Fallavier, France). 

The OPAHs quantified in this study were supplied by Acros Organics, Noisy le Grand, France 

(1-naphthaldehyde, 9-fluorenone, 9,10-anthraquinone, benzanthrone and benz[a]anthracen-7,12-

dione), Aldrich, St-Quentin Fallavier, France (phenanthren-9-carboxaldehyde) and Chiron, 

Trondhein, Norway (1,4-anthraquinone, benzo[a]fluoren-11-one, benzo[b]fluoren-11-one).  

NPAHs were purchased from Carlo Erba SDS, (2-nitrofluoranthene), Acros Organics, Noisy le 

Grand, France (1-nitronaphthalene, 6-nitrochrysene), Aldrich, St-Quentin Fallavier, France (9-

nitroanthracene), Chiron, Trondhein, Norway (2-nitropyrene, 4-nitropyrene, 1,8-dinitropyrene) and 

Dr. Ehrenstorfer GmbH, Augsburg, Germany (2-nitronaphthalene, 2-nitrofluorene, 3-

nitrofluranthene, 9-nitrophenanthrene, 3-nitrophenanthrene, 1-nitropyrene, 7-

nitrobenz[a]anthracene, 1,3-dinitropyrene, 1,6-dinitropyrene and 6-nitrobenzo[a]pyrene). These 

chemicals were used to prepare calibration standards for the determination of response factors.  

Deuterium labelled NPAHs from Chiron, Trondhein, Norway ([2H9]2-nitrofluorene, [2H9]3-

nitrofluoranthene and [2H9]6-nitrochrysene) and CDN Isotopes, Pointe-Claire, Canada (Quebec) 

([2H9]1-nitronaphthalene) were used as internal standards. 

SRM1649a, a reissue of SRM1649 with updated certified and reference concentration values, 

was prepared from atmospheric particulate material collected in the Washington-DC area in the late 

1970s, using a baghouse collector specially designed for this purpose [30]. Detailed information on 

the sample collection and preparation have already been detailed in a previous paper [31]. 

Ambient air samples come from the sampling campaigns of the French POVA program 

(POllution des Vallées Alpines). Details of the sampling campaigns are fully described in the 

reference [32]. Briefly, samples have been collected for two weeks during the Winter 2002-2003 
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and the Summer 2003 in two French alpine valleys (Chamonix and Maurienne valleys) after the 

reopening of the “Tunnel du Mont Blanc” to international traffic (which was closed during 3 years 

after a large accident on March 1999). Both ambient air particulate (on quartz filter) and gas (on 

PUF polyurethane foams) phases were sampled using modified high volume samplers equipped 

with PM10 head (Megatec Digitel DA-80, 30 m3 h-1) in order to determine parent PAHs and PAHs 

derivative concentrations. Results on PAHs concentrations and details on the analytical procedure 

used for their analysis (HPLC with fluorescence/UV detection) are presented elsewhere [33]. 

 

2.2. Extraction and purification 

 
Filters and SRM 1649a urban dust material (approximately 100 mg or 50 mg, 3 replicates of 

each) were extracted by pressurised liquid extraction (PLE; Dionex trade name ASE for accelerated 

solvent extraction) with a Dionex ASE 200 system. PUFs were extracted using Dionex ASE 300 

system. In both cases, dichloromethane was used as extraction solvent. ASE 200 program 

parameters were: temperature at 120 °C, pressure at 140 bars, heat time at 6 min and static time at 6 

min, for 3 cycles. ASE 300 program parameters were: temperature at 90 °C, pressure at 100 bars, 

heat time at 5 min and static time at 6 min, for 3 cycles. Extracts were evaporated under a nitrogen 

stream (Zymark Turbovap II) down to a volume of 500 µl and adjusted to 1 ml with 

dichloromethane. 

All samples and blanks were purified using a liquid chromatography purification procedure on 

SPE cartridge. This procedure was adapted from a protocol previously developed by Mazeas and 

Budzinski [34]. Organic extracts were eluted through an alumina SPE cartridge (Extract-Clean, 

Alltech, Templemars, France) with 9 ml of dichloromethane in order to remove all macromolecules 

and polar interfering compounds. Then, a second purification on silica SPE cartridge (Extract-

Clean, Alltech, Templemars, France) was performed to separate the alkane fraction from the 

aromatic one in order to keep a clean GC/MS injection port. Alkanes were eluted with 1 ml of n-
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pentane, then the aromatic compounds were collected with 9 ml of a (65/35, v/v) n-

pentane/dichloromethane mixture. Finally, after reconcentration to dryness under an argon stream, 

residues were dissolved in 60 µl of dichloromethane. 

 

2.3. Analysis 

 
NAPHs and OPAHs were analysed by GC/MS in the NICI mode. The column used for analyses 

was a 5% phenyl-substituted methylpolysiloxane (DB-5MS, 30 m × 0.25 mm I.D., 0.25 µm film 

thickness, J&W Scientific, USA). This column was adopted because of its capacity to well separate 

6-nitrobenzo[a]pyrene from 1-nitrobenzo[e]pyrene (m/z=297) [27], the first being a degradation 

product of benzo[a]pyrene. This latter PAHs being the reference compound used to evaluate the 

potential global PAHs toxicity, it is thus very important to quantify its nitrocongener, formed in the 

atmosphere and also perhaps during the sampling. On the other hand, it should be noted that 

separation of both isomers of nitrofluoranthene (2- and 3-nitrofluoranthene) will not be separated 

using this column. Analyses were performed using a Perkin-Elmer Clarus 500 gas chromatograph 

coupled to a Perkin-Elmer Turbomass Gold mass spectrometer. Program settings were as follows: 

cool splitless injection mode in order to not degrade NPAHs (injector temperature from 40 °C to 

320 °C), transfer line at 300 °C and constant gas flow through column of 1.2 ml min-1. The oven 

temperature program was the following: initial temperature at 60 °C for 2 min; 45 °C min-1 to 150 C 

for 5 min; 5 °C min-1 to 300 °C for 7 min. Total run time was 46 min. The volume injected varied 

from 0.5 µl to 2 µl depending on the sample load. MS parameters are described below: source 

temperature 150 °C, electron energy 45 eV; methane was used as the reagent gas for NICI. The 

mass spectrometer was run in selective ion monitoring mode (inter-channel delay: 0.01 s; span: 

0.1). Monitored ions and associated deuterium labelled NPAHs internal standards are shown in 

Table 1. 
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3. Results and discussion 
 
3.1. Detection limits and recovery levels  

 
A total of 17 NPAHs and 9 OPAHs were separated and identified for quantification. Analytes 

were identified by comparison of retention times using standards. Quantification of NPAHs and 

OPAHs was based on a daily seven-point calibration curve (r²>0.99). For instance, Figs. 1 and 2 

present respectively, the reconstituted GC/MS total ion chromatogram for OPAHs and the GC/MS 

profiles of SIM of molecular ions in a particulate ambient air sample from the POVA research 

program.  

The limits of detection (LODs), defined as the lowest concentration differing significantly from 

zero (S/N=3), fall in the range value of 0.01-2.60 pg and of 0.03-0.07 pg for injected OPAHs (9-

fluorenone - 1,4-anthraquinone) and injected NPAHs (3-nitrophenanthrene - 6-

nitrobenzo[a]pyrene), respectively. The limits of quantification (LOQs), defined as the lowest 

concentration of the compound than can be determined (S/N=10), fall in the range values of 0.03-

8.60 pg of injected OPAHs and of 0.12-0.24 pg of injected NPAHs. Recovery factors (RFs) of the 

entire analytical procedure (n=9) ranged, for NPAHs, from 14% for 1-nitronaphthalene to 84% for 

7-nitrobenz[a]anthracene and varied, for OPAHs, from 5% for 1-naphthaldehyde to 83% for 

benzo[b]fluorenone. Results were corrected according to these recovery factors. Recoveries were 

strongly dependent on the solvent mixture used in the second step of the purification procedure. 

Finally, the mixing ratio used was the best compromise found to give acceptable recoveries for both 

NPAHs and OPAHs. Recoveries for the most volatile compounds (1-nitronaphtalene, 2-

nitronaphthalene and 1-naphthaldehyde) were relatively poor (RFs<50%). However, taking into 

account the lack of information for these three compounds in ambient air, results were considered as 

preliminary but interesting as they provide an order of magnitude of their concentrations in the 

reference material and in the ambient air samples. 
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3.2. OPAHs concentrations in air particulate reference material 

 
The quantitative results concerning OPAHs measured by GC/NICI-MS in SRM 1649a (urban 

dust) are listed in Table 2. Concentrations measured for the same compounds in previous studies are 

also reported in the same Table. Excluding the values for 9-fluorenone and 9,10-anthraquinone 

from Fernandez and Bayona [28], OPAHs concentrations measured in this work are in the same 

order of magnitude than most previously reported studies: Values given for instance for 9,10-

anthraquinone by Durant et al. [21] and Cho et al. [29] are very close to those measured in this 

work. 1,4-anthraquinone is the only compound that has not been detected in this material and 

benz[a]anthracen-7,12-dione appears to be the most abundant OPAHs. 

 

3.3. NPAHs concentrations in air particulate reference material 

 
Results for selected NPAHs in SRM 1649a (urban dust) measured in this study and those 

previously reported in the literature are compared in Table 3. Concentration values measured in this 

study are generally in good agreement within a range of 8-45% (excluding Environment Canada 

data). The agreement for other compounds like 2-nitropyrene, 7-nitrobenz[a]anthracene and 6-

nitrochrysene, is less obvious (65-215%). 

 

3.4. Application to ambient air samples 

 
The proposed method was applied for the analysis of OPAHs and NPAHs in ambient air samples 

collected during the POVA research program. As an example, atmospheric concentrations measured 

during the Winter 2002-2003 (from 01/24/03 to 01/30/03) at a rural site in the Maurienne valley (at 

Sollières, 1373 m) are presented in Table 4. 

Among all the 17 NPAHs and 9 OPAHs measured, only the 1,4-anthraquinone was not detected 

in the particulate phase. Due to the very low ambient temperature during the sampling [average T°C 
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(± 1σ)=-4.3 (±3.7)], the heaviest NPAHs (from 6-nitrochrysene to 6-nitrobenzo[a]pyrene) were not 

detected in the gas phase (neither 2-nitrofluorene and 1,4-anthraquinone). OPAHs and NPAHs with 

less than two aromatic cycles are principally present in the gas phase or partitioned between both 

phases (about 85% in the gas phase for 1-naphthaldehyde, 1- and 2-nitronaphthalene and about only 

45% for 9-fluorenone). 

9,10-Anthraquinone and 9-fluorenone are the prevalent OPAHs in the particulate phase. 9-

nitroanthracene is the predominant NPAHs in the particles following by the 3+2-nitrofluoranthene 

and the 2-nitropyrene. This latter compound is a gas-phase reaction product commonly used as a 

tracer of atmospheric photochemical reaction [36-38]. The abundance of this compound, combined 

with the low concentration of 1-nitropyrene (direct emissions tracer [36-38]), indicates a large 

distance from the pollution sources.  

Due to a lack of data in the literature, no direct comparison of the average concentration levels 

for all the OPAHs and NPAHs quantified in this work has been possible (same sampling season and 

similar sampling site characteristics). Nevertheless, concentrations of individual OPAHs and 

NPAHs such as 9,10-anthraquinone, 9-fluorenone, 1- and 2-nitropyrene have been compared with 

those measured in few previous other studies. 

Considering the site of Sollières, which is a rural site, NPAHs and OPAHs average concentration 

levels observed are relatively important. In the Winter period, similar levels of 9-fluorenone (6.90 

ng m-3), found in both gas and particulate phases in Minneapolis, and of 9,10-anthraquinone (1.0 pg 

m-3), measured in particulate matter samples collected in Alger, were reported in references [39] 

and [40], respectively. Comparable levels of 2-nitropyrene were also reported, during the Winter 

period, in big urban areas like Napoli (60.0 pg m-3) and São Paulo (42 pg m-3) [36, 41]. Considering 

the distance from combustion sources, levels of 1-nitropyrene are about 10 times lower than those 

measured in urban sites (Napoli: 99.0 pg m-3, São Paulo: 99.0 pg m-3, Firenze: 130.0 pg m-3, 

Birmingham: 90.0 pg m-3) [36, 41-43]. 



 10 

Fig. 3 shows the weekly variations of Σ PAHp, Σ OPAHp and Σ NPAHp defined as the sum of 

the concentrations of PAHs, OPAHs and NPAHs mainly present in the particulate phase. This may 

concern PAHs with more than 3 aromatic cycles (from benz[a]anthracene to indeno[1,2,3-

cd]pyrene) and NPAHs or OHAPs with more than 2 rings. During the sampling week, three 

successive meteorological events were encountered: an anticyclonic period, strong snowfalls, 

following by a new anticyclonic period. During anticyclonic periods, the total PAHs concentration 

has increased, probably due to an accumulation process. Then, the strong snowfall has induced a 

decrease of the total PAHs concentration by wet deposition. This hypothesis is in good agreement 

with the evolution of the amounts of PM10 aerosols followed during the same period at the same 

site. More, variations of Σ OPAHp and Σ NPAHp are consistent with the evolution of Σ PAHp and 

of the PM10 and validate the quantification method used for these compounds present at low 

concentrations in ambient air samples.  

 

4. Conclusion 

 
An analytical method has been especially developed for the simultaneous determination of 17 

NPAHs and 9 OPAHs at very low concentration levels. Despite the large differences between the 

NPAHs and OPAHs concentration ranges (one to two orders of magnitude), this method is easy to 

apply and allows a routine quantification of ambient air NPAHs and OPAHs within a single 

analysis.  

Studying PAHs derivatives appears very important considering their high mutagen capacity and 

the possible underestimation of the effect of the PAHs chosen in Europe as a reference, namely the 

benzo[a]pyrene, which may be potentially chemically degraded during high-volume air sampling 

[44, 45]. 

The analytical procedure was applied to both gas and particulate samples collected during the 

POVA research program. Preliminary results obtained at Sollières show a good correlation between 
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primarily or secondary compounds and the characteristics of the rural sampling site. Measurements 

obtained for both NPAHs and OPAHs and resulting from the POVA campaigns carried out after the 

reopening of the “Tunnel du Mont Blanc” to the international traffic (Winter 2002-2003 and 

Summer 2003 campaigns) will be published in a future paper. 
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Table 1 

Selected ion monitoring conditions for OPAHs and NPAHs 

Compound Monitored 
ions (m/z) 

Dwell 
time (s) 

Labelled NPAHs internal  
standard 

Monitored 
ions (m/z) 

Dwell 
time (s) 

OPAHs 

1-Naphthaldehyde 156 0.08 [2H9]1-nitronaphthalene 180 0.04 

9-Fluorenone 180 0.04 [2H9]1-nitronaphthalene 180 0.04 

9-Phenanthrencarboxaldehyde 206 0.08 [2H9]2-nitrofluorene 220 0.08 

9,10-Anthraquinone 208 0.04 [2H9]2-nitrofluorene 220 0.08 

1,4-Anthraquinone 208 0.04 [2H9]2-nitrofluorene 220 0.08 

Benzo[a]fluorenone 230 0.04 [2H9]3-nitrofluoranthene 256 0.08 

Benzo[b]fluorenone 230 0.04 [2H9]3-nitrofluoranthene 256 0.08 

Benzanthrone 230 0.04 [2H9]3-nitrofluoranthene 256 0.08 

Benz[a]anthracen-7,12-dione 258 0.08 [2H9]3-nitrofluoranthene 256 0.08 

NPAHs 

1-Nitronaphthalene 173 0.08 [2H9]1-nitronaphthalene 180 0.04 

2-Nitronaphthalene 173 0.08 [2H9]1-nitronaphthalene 180 0.04 

2-Nitrofluorene 211 0.08 [2H9]2-nitrofluorene 220 0.08 

9-Nitroanthracene 223 0.04 [2H9]2-nitrofluorene 220 0.08 

9-Nitrophenanthrene 223 0.04 [2H9]2-nitrofluorene 220 0.08 

3-Nitrophenanthrene 223 0.04 [2H9]2-nitrofluorene 220 0.08 

3+2-Nitrofluoranthene* 247 0.08 [2H9]3-nitrofluoranthene 256 0.08 

4-Nitropyrene 247 0.08 [2H9]3-nitrofluoranthene 256 0.08 

1-Nitropyrene 247 0.08 [2H9]3-nitrofluoranthene 256 0.08 

2-Nitropyrene 247 0.08 [2H9]3-nitrofluoranthene 256 0.08 

7-Nitrobenz[a]anthracene 273 0.08 [2H9]6-nitrochrysene 284 0.08 

6-Nitrochrysene 273 0.08 [2H9]6-nitrochrysene 284 0.08 

1,3-Dinitropyrene 292 0.04 [2H9]6-nitrochrysene 284 0.08 

1,6-Dinitropyrene 292 0.04 [2H9]6-nitrochrysene 284 0.08 

1,8-Dinitropyrene 292 0.04 [2H9]6-nitrochrysene 284 0.08 

6-Nitrobenzo[a]pyrene 297 0.08 [2H9]6-nitrochrysene 284 0.08 
* the separation of these two isomers could not be achieved on the 5% phenyl-substituted methylpolysiloxane phase. 
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Table 2 

OPAHs concentrations (ng g-1) in SRM 1649a (urban dust) 

OPAHs This worka Fernandez and Bayona, 1992b Durant et al.,1998c Cho et al., 2004d 

1-Naphthaldehyde 199 (59)* - - - 

9-Fluorenone 1110 (139) 300 (30) 1600 (110) - 

9-Phenanthrencarboxaldehyde 247 (33) - - - 

9,10-Anthraquinone 2238 (363) 220 (40) 2700 (120) 2030 (192) 

1,4-Anthraquinone nd** - - - 

Benzo[a]fluorenone 3512 (284) 1890 (300) 1900 (210) - 

Benzo[b]fluorenone 4845 (812) 1570 (20) 5010 (470) - 

Benzanthrone 3715 (872) 1310 (20) 4500 (340) - 

Benz[a]anthracen-7,12-dione 8459 (797) 7465 (1100) 2400 (250) - 
* mean concentration (standard deviation). 

** not detected.  

a GC/NICI-MS (5% phenyl phase), n=6. 

b OPAHs values reported in [28], using GC/EI-MS (5% phenyl phase) after fractionation by GPC (gel permeation 

chromatography) and NP-LC (normal phase liquid chromatography), n=1. 

c OPAHs values reported in [21], using GC/EI-MS (5% phenyl phase) after fractionation by gravity column 

chromatography and HPLC (high performance liquid chromatography), n=1 (3 injections). 

d OPAHs values reported in [29], using GC/EI-MS (5% phenyl phase) after derivatization, n=12. 
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Table 3 

NPAHs concentrations (ng g-1) in SRM 1649a (urban dust) 

NPAHs This worka Bamford et al.,2003b Chiu and 
Miles,1996c 

Intercomparison exercise study 

NISTd Environment 
Canadae 

1-Nitronaphthalene 12.5 (2.6)* 
 

6.8 (0.3) - - - 

2-Nitronaphthalene 12.0 (2.4) 10.0 (0.5) - - - 

2-Nitrofluorene <0.4 <5 <2 - - 

9-Nitroanthracene 39.1 (4.2) 35.9 (0.6) 34.0 (1.0) 33.9 (0.9) 6.4 (0.9) 

9-Nitrophenanthrene 1.9 (0.5) 1.7 (0.1) <2 - - 

3-Nitrophenanthrene 34.0 (3.4) 22.0 (0.6) - - - 

3+2-Nitrofluoranthene* 316.1 (47.4) 286.5 (32.8) 315.0 (29.0) 334.8 (15.8) 225.0 (20.0) 

4-Nitropyrene 6.0 (0.9) 5.5 (0.6) - - - 

1-Nitropyrene 104.5 (6.4) 71.5 (5.1) 78.0 (8.0) 79.5 (3.5) 60.8 (1.1) 

2-Nitropyrene 190.0 (51.4) 24.4 (4.0) - - - 

7-Nitrobenz[a]anthracene 11.1 (7.2) 35.1 (3.6) 25.0 (1.0) 29.5 (0.7) 19.3 (0.9) 

6-Nitrochrysene 1.8 (0.3) 4.4 (0.2) 3.0 (0.6) <5 3.9 (0.1) 

1,3-Dinitropyrene <4 <2 <10 - - 

1,6-Dinitropyrene <3 <4 <10 - - 

1,8-Dinitropyrene <4 <2 <10 - - 

6-Nitrobenzo[a]pyrene 25.0 (6.7) <40 <0.8 <5 122.0 (9.0) 

* mean concentration (standard deviation). 

aGC/ NICI-MS (5% phenyl phase), n=6. 

bNPAHs values reported in [27], using GC/ NICI-MS (50% phenyl phase), n=3. 

cNPAHs values reported in [25], using GC/HRMS  (high resolution mass spectrometry) (5% phenyl phase), n=3. 

dNPAHs values reported by NIST [35] using GC/MS (50% phenyl phase), n=3. 

eNPAHs values reported in [35], using GC/MS (5% phenyl phase), n=3. 
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Table 4 

Average atmospheric OPAHs (ng m-3) and NPAHs (pg m-3) concentrations at Sollières (rural site, 

1373 m, Maurienne Valley, 7 sampling days of 12 h, Winter 2002-2003, n=13) 

Compound Particulate phase Gas phase 

OPAHs 

1-Naphthaldehyde 0.13 (0.00 - 0.52)* 1.43 (0.00 - 4.42) 

9-Fluorenone 1.38 (0.35 - 4.72) 1.23 (0.00 - 5.06) 

9-Phenanthrencarboxaldehyde 0.15 (0.02 - 0.38) 0.00 ( 0.00 - 0.00) 

9,10-Anthraquinone 2.18 (0.15 - 9.93) 0.01 (0.00 - 0.06) 

1,4-Anthraquinone nd** nd 

Benzo[a]fluorenone 0.60 (0.03 - 3.69) 0.00 (0.00 - 0.00) 

Benzo[b]fluorenone 0.56 (0.02 - 3.58) 0.00 (0.00 - 0.00) 

Benzanthrone 0.46 (0.02 - 2.97) 0.00 (0.00 - 0.00) 

Benz[a]anthracen-7,12-dione 0.42 (0.03 - 3.03) 0.00 (0.00 - 0.00) 

NPAHs 

1-Nitronaphthalene 3.8 (0.0 - 12.2) 22.0 (0.0 - 60.4) 

2-Nitronaphthalene 1.8 (0.5 - 3.2) 14.7 (0.0 - 33.6) 

2-Nitrofluorene 0.2 (0.0 - 2.0) nd 

9-Nitroanthracene 105.5 (2.5 - 626.5) 2.1 (0.0 - 17.8) 

9-Nitrophenanthrene 0.4 (0.0 - 0.8) 0.0 (0.0 - 0.1) 

3-Nitrophenanthrene 3.2 (0.2 - 1.54) 0.0 (0.0 - 0.1) 

3+2-Nitrofluoranthene* 76.7 (8.0 - 538.8) 0.0 (0.0 - 0.1) 

4-Nitropyrene 6.1 (0.5 - 22.9) 0.0 (0.0 - 0.2) 

1-Nitropyrene 10.6 (2.7 - 28.9) 0.0 (0.0 - 0.2) 

2-Nitropyrene 67.1 (6.7 - 403.2) 0.3 (0.0 - 4.4) 

7-Nitrobenz[a]anthracene 15.3 (0.0 - 154.1) 0.0 (0.0 - 0.5) 

6-Nitrochrysene 0.6 (0.2 - 2.4) nd 

1,3-Dinitropyrene 3.7 (0.0 - 27.7) nd 

1,6-Dinitropyrene 1.3 (0.0 - 4.4) nd 

1,8-Dinitropyrene 9.5 (0.0 - 27.2) nd 

6-Nitrobenzo[a]pyrene 8.6 (0.0 - 93.4) nd 

* mean concentration (min - max).   

** not detected. 
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