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Abstract

An integrated and theoretical approach is proposed to determine poroelastic properties of

isotropic or transversely isotropic argillaceous rocks from conventional mechanical and hydraulic

field tests. It uses values of specific storage coefficient, "undrained" elastic parameters and porosity.

No special hydromechanical test is required. In the isotropic case, a simple binomial equation is

derived, whereby the poroelastic properties can be rapidly obtained. An application to deep

argillaceous formations has shown that calculated poroelastic property values are in satisfactory

agreement with direct experimental measurements. In the transversely isotropic case, which is more

representative of sedimentary rocks, the approach is generalized from a theoretical relationship

between the specific storage coefficient and anisotropic poroelastic properties. Nevertheless, in both

cases, sensitivity analyses have shown that the method is very sensitive to input data, especially the

specific storage coefficient and the "undrained" mechanical parameters which have to be measured

with accuracy.

Index terms:

Physical properties of rocks: 5199 General or Miscellaneous

Hydrology: 18199 General or Miscellaneous

Key words: Specific storage coefficient, Poroelastic properties, Biot's coefficient,

Clay stone.



1. Introduction

The coupling of stress-strain and pore fluid pressure in deep clayey rocks is relevant to many

academic and practical problems in Earth Sciences: pore pressure build-up resulting from

compaction of a sedimentary basin during its formation [e.g., Bredehoeft and Hanshaw, 1968]; the

hydromechanical behaviour of clayey rocks due to excavation of tunnels or deep repositories [e.g.,

Benamar et al, 1998], the hydromechanical response of nuclear waste disposal due to heating [e.g.,

Palciauskas and Domenico, 1982] and the interpretation of hydromechanical tests in such a

geological medium [e.g., Djeran-Maigre and Gasc-Barbier, 2000]. Al l these problems involve

strong coupling between pressurization, fluid motion and deformation of the porous rock. The

pioneering theoretical work on hydromechanical behaviour of isothermal porous media was done by

Biot [1941, 1956]. Rice and deary [1976] have developed general solutions to classical

initial/boundary value problems and recast Biot's theory in terms of new material parameters, more

directly open to physical interpretation.

The poroelastic parameters are measured by "drained" and "undrained" triaxial compression

tests [e.g., Charlez, 1997]. The terms "drained" and "undrained" refer to the boundary conditions

where there are no changes respectively in pore fluid pressure and in pore fluid mass. However,

considering tight argillaceous rocks, it is not practical to measure all the poroelastic parameters, in

particular the "drained" elastic moduli. Indeed, considering low permeability media with

permeabilities between 10'19 and 10"21 m2, it is difficul t to measure and a fortiori  to control pore

pressure in the sample. These measurements require special experimental techniques, which

demand strictly controlled tightness and may be unacceptably long. Moreover, during long transient

flow, viscosity of the porous skeleton may also play a significant role leading to effective stress

changes and time-dependent mechanical behavior. Hence the interpretation of mechanical tests may

become more complex.



Consequently, it is desirable to have some method of correlating the "drained" elastic

moduli to physical parameters, which would be easier to obtain experimentally. One idea, initially

used by Domenico and Mifflin  [1965] is to relate "drained" mechanical parameters to the specific

storage coefficient. In ground-water hydraulics or hydrogeology, their expression is generally used

to compute an order of magnitude of the specific storage for a confined aquifer for typical lithology

[e.g., Domenico and Schwartz, 1997). Later, Green and Wang [1990] derived a new relationship

between the specific storage coefficient and "drained" poroelastic moduli written using the

formalism of Rice and Cleary [1976]:

Ss =
K KA K +4/3G j T\Kf Ks

(1)

where Ss is the specific storage coefficient, pf l is the pore fluid density, K is the "drained" bulk

modulus, Ks is the "unjacketed" bulk modulus which is approximately equal to the modulus of the

solid part of the rock, G is the shear modulus, (j) is the open porosity, Kf is the bulk modulus of the

fluid, g is gravitational acceleration. This expression is often applied to determine the value of the

specific storage coefficient prior to model permeability field tests [e.g., Beauheim et al, 1991] and

laboratory tests on transient hydraulic flow [e.g., Neuzil, 1986]

In this paper, we investigate this relationship in a way opposite to that usually used in

hydrogeology: how can we use the specific storage measurements of in situ argillaceous rocks to

calculate their poroelastic properties?

In the first part of the paper, the proposed method is shown to simply and rapidly provide an

estimate of the poroelastic properties of isotropic argillaceous rocks from the specific storage

coefficient with a satisfactory range of uncertainty. This method is based on an equation similar to

that of Green and Wang [1990], which is reformulated in order to introduce the "undrained" bulk

modulus, easier to measure in argillaceous rocks. It requires values of the specific storage

coefficient obtained from "modified" slug tests as discussed by Bredehoeft and Papadopoulos

[1980] for low-permeability formations. The assumptions and underlying uncertainties of such an



approach are discussed and an attempt is made to validate it. This approach is applied to three deep

argillaceous formations from the Paris sedimentary basin (taken at a depth of 375 m to 855 m).

In the second part, our aim is to establish an expression relating the specific storage

coefficient to poroelastic constants from transversely isotropic clayey rocks. In this particular

condition of anisotropy, a non-linear system of equations is derived and solved numerically for the

Toarcian shale from the Tournemire site in southern France.

2. Isotropic case

2.1 Governing equations

Let us consider the following assumptions :

• An infinitely long and vertical borehole is drilled in a homogenous and isotropic porous

medium. The borehole radius is designated as ro.

• The vector of displacement u is purely radial : u = u(r,t)er where e? is the radial unit vector

in a cylindrical coordinate system.

• The boundary conditions far from the borehole wall, are written as follows:

P(r —*-<x>,t) = P0 or ÔP/or = 0 ( hydraulic condition)

trs = 0(no volumetric strain) or ar=c7o (mechanical condition),

tr : trace operator; § : strain tensor; P : pore fluid pressure ; ar : radial component of the

stress tensor g;, ao : initial lithostatic pressure.

From these assumptions, the combination of Darcy's law, of the continuity equation for the

fluid mass and of a constitutive poroelastic law yields [e.g., Rice and deary, 1976, or Coussy,

1995):

~ = c V2P (2)
dt m ( 2)

where cm is the hydraulic diffusivity coefficient (m2/s) defined by :



k 3K + 4G
cm=-M  (3)

m TJ 3K"+4G

where k is the intrinsic permeability (m2), r\ is the fluid dynamic viscosity (Pa.s), M is Biot's

modulus (Pa), K is the « drained » bulk modulus (Pa), Ku is the « undrained » bulk modulus (Pa),

G is the shear modulus (Pa).

It should be emphasized that equation (2) is independent of the boundary condition defined

at the borehole wall (p(r=ro,t)). In our problem, the parameters k, r\, Ku, G are given or can be

measured, but constants M and K are unknown.

In hydrogeology, the specific storage coefficient (expressed in m" ) can be defined from the

following governing equation for transient flow [e.g., Marsily, 1986]:

(4)J dt

where g is the gravitational acceleration, pf l is the pore fluid density, z is the elevation. If the flow is

purely radial ( Vz = 0) and if parameters k, r\ and pf l are constants (i.e. independent of the radius r),

equation (4) can be rewritten as follows:

f V j f (5)
Ot T]

By comparing equations (2) and (5) one can express the specific storage coefficient Ss as a

function of poroelastic properties:

S, 1 3KU + 4G

pflg M 3K + 4G

This expression is consistent with that of Green and Wang [1990] as shown in Appendix A.

(6)

2.2 A method for  determining poroelastic properties from Ss

Equation (6) is now used to constrain the determination of poroelastic properties of low-

permeability media. But this determination wil l be achieved if complementary "micromechanical"

equations are considered. The term "micromechanical" refers to fluid and matrix properties, which



are included in these equations. These equations are widely used in rock mechanics and may reduce

the number and hence the cost of the measurements [e.g., Charlez, 1991]. They are based on the

two following assumptions [Nur andByerlee, 1971):

• The matrix is homogeneous, isotropic and elastic. Here, the matrix is considered, not

only as a solid (grains), but as the association of the grains and the unconnected

porosity.

• The connected porosity is supposed to be constant when the rock sample is subjected

to the particular hydromechanical loading: Aam= ÀP with am : total mean stress

(positive in compression) and P : pore pressure.

These "micromechanical" equations are written as follows:

a = l-— (7)
Ks

KM Ks Kfl

where Ks and Kfl are the bulk modulus of the matrix and of the liquid respectively, a is Biot's

coefficient which can also be defined by the concept of effective stress :

aeff = £ - aP[ (9)

where eeff is the effective stress tensor, g : total stress tensor, 1 :is the unit tensor. Equation (9) can

be viewed as a generalization of the so-called Terzaghi's equation in soil mechanics (with oc=l

considering Ks —» co in equation 7).

As previously mentioned, the "drained" bulk modulus K is difficult to measure

experimentally in low-permeability media. It is thus convenient to introduce the "undrained" bulk

modulus Ku which can be related to K as follows:

(10)
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Equation (10) is obtained by comparing the poroelastic constitutive laws written for "drained"

and "undrained" conditions [Coussy, 1995]. By combining of equations (7), (8) and (10) one can

rewrite the specific storage coefficient (equation 6) according to the form given by Green and Wang

[1990] (equation 1) (see appendix A).

The set of equations (6), (7), (8) and (10) forms a system of 4 equations with 4 unknowns: a, M,

K, Ks. In order to solve this system, the following data are required:

• The "undrained" bulk modulus Ku and the shear modulus G, which are obtained from

conventional "undrained" compression tests in rock mechanics [e.g., Charlez, 1997]. These

"undrained" tests are easily performed since the pore pressure in the sample is not measured.

• The specific storage Ss, which can be obtained from "modified" slug tests [Bredehoeft and

Papadopoulos, 1980] for low-permeability formations.

• The connected porosity (j) measured by a standard mercury porosimetry technique.

• The bulk modulus of the liquid (mostly water) Kg.

No hydromechanical coupling parameter is required.

By manipulating the system of equations (6), (7), (8) and (10), a simple binomial equation is

obtained:

dd +C2a+C3=0 (11)

with :

K'+4/3G J__ K-Z f f
1 2 Kfl Ku+4/3G W K }

C2=-(l
Kfl

(12b)

(12c)



where E = —j— (in Pa"1).
^

Equation (11) can be easily solved and has real solution(s) if the following obvious

inequality is satisfied C22-4CiC3 > 0. The others unknowns Ks, K and M are determined by

combining equations (7), (8) or (10). For instance, Biot's modulus M is given by the following

relationship:

<j)(K u+4/3G) KU

-<b + é-a(l + é)

It should be emphasized that all the values of parameters a, Ks, K and M have to satisfy the

following inequalities [Coussy, 1995]:

K<X<K S 0<a<l (5skemptm=^-<l  (14)

Parameter fiskempton is called Skempton's coefficient or the pore pressure build-up coefficient,

defined as the change in pore pressure P per unit change in total mean stress am applied in

undrained condition (dm=0, no mass supply of liquid).

2.3 Validation

As mentioned above, this method requires a value of the specific storage coefficient Ss

which can be obtained from "modified" slug tests for low-permeability formations [Bredehoeft and

Papadopoulos, 1980]. Such a value obtained from a field experiment is preferable to laboratory data

since it is the more representative of in situ rock behaviour.
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The "modified" slug test or "Pulse" test is based on an equation that describes the decay of

an abrupt head change caused by pressurizing the volume stored in a closed well. This equation is

an analytical solution of the following boundary value problem, which can be expressed as

Ê^L  l^L  Ë^L  (16)
Br2 r ôr K dt

with the initial and boundary conditions

h(r,0)=0

h(oc,t)=0 ; h(rs,t)=H(t) ; H(0)=H0

(rs,t) V^pAt)
r dt

where h : head change in the tested interval of the formation due to pressurization (m), r : radial

distance from the center of the well (m), Ss : the specific storage coefficient of the tested interval

(m"1), K : hydraulic conductivity (m/s), rs : radius of the well in the tested interval (m), e: thickness

of the tested interval (m); Vw : volume of water within the pressurized section of the system (m ),

C* : effective compressibility of water below the packers which includes the compressibility of both

water and test equipment (Pa"1).

The analytical solution of (16) has the following form :

AH/AH0=F(a,b) (17a)

with a = S, e s-~=- etb = Ket ^—— (17b)
v^pflg vwc*pflg

Bredehoeft and Papadopoulos [1980] proposed a procedure to determine the dimensionless

parameters a and b, and hence the physical parameters K and Ss. As mentioned by these authors, we

are aware that this method may not be able to measure small Ss, which is found in stiff rocks with

low porosity (typically crystalline rocks). Very small Ss may lead to the same transient response

curve for different pressurizations. In particular, the authors stated that a determination of Ss has

questionable reliability when the dimensionless number a is smaller than 10"5 [Papadopoulos et al.,
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1973]. Consequently, in the following, the inequality a> 10"5 wil l be considered as a criterion for

applying the approach presented in this paper.

The proposed method is difficul t to validate for at least two reasons. On the one hand,

natural variability may affect numerous parameters, which have to be quantified (see for instance

Table 1). On the other hand, this validation requires a set of data for a given clayey formation from

different scientific fields: hydrogelogical, mechanical and hydromechanical. These data have to be

determined independently of each other.

To our knowledge, the only clayey formation for which a rather extensive set of data is

available, is the claystone belonging to the Callovo-Oxfordian (sampled at about 400-500 m deep in

the Paris basin). This claystone is under study by Agence Nationale de Gestion des Déchets

Radiocatifs (ANDRA) for a potential deep radioactive waste repository. Table 1 shows mean

experimental values of the data we used to solve equation (11). From Table 1., the mean calculated

value of Biot's coefficient a, is 0.4 and the dimensionless number a is equal to 5 10"2. This value of

Biot's coefficient is physically acceptable and can be compared with that obtained directly from

hydromechanical tests. By using a special consolidation test-oedometer, Vincké et al. [1997]

measured Biot's coefficient on the same claystone in the range [0.4-0.8] at an applied uniaxial stress

in the range [9-35 MPa]. By using a triaxial cell and an experimental procedure similar to that of

Neuzil et al. [1981], Coste et al. [1999] obtained a value of Biot's coefficient of 0.36 for the same

claystone.

However, the previous comparison cannot be considered as a complete validation of the

method since:

(a) In Vincké's experiments, the values of Biot's coefficient are measured on samples for

which the stress state and the induced porosity changes are unknown. The extrapolation

to the hydromechanical conditions of the in situ rock is difficult . In Coste's experiment,

the value of 0.36 was obtained on a single sample.
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(b) This preliminary calculation does not take into account the variation range of the

different parameters. As wil l be shown later, the variation range may be large for

particular parameters and hence may significantly influence our results. This point is

discussed in the following section.

This comparison with all of these experimental values leads to apply the method to other

argillaceous rocks.

2.3 Applications and Parameter  Sensitivity Analyses

In order to identify a suitable site for disposal of French high radioactive waste, ANDRA

has conducted geophysical and hydrogeological surveys in the main low-permeability argillaceous

formations of the Paris basin. In borehole number 901 drilled during the "Aisne" campaign (1987-

1990), "Pulse-tests" have been performed in two clayey rocks belonging to the Callovo-Oxfordian

[375-478 m deep] and Toarcian-Domerian [692-855 m deep].

Laboratory measurements of mechanical parameters were carried out by Groupement pour

l'étude des Structures Souterraines de Stockage (G.3S). The compressional and shear wave

velocities were measured by ultrasonic pulse in two perpendicular directions (parallel and

perpendicular to the stratification). No clear anisotropy was observed. The total porosity was

measured with a mercury porosimeter at the Bureau de Recherche Géologique et Minières

(BRGM). AU these data are available in Cellier [1998].

The dimensionless parameter a was calculated from equation (17b) and from data given in

tables 2 and 3. The effective compressibility C*, which is not available from Cellier [1988], was

taken as equal to six times the compressibility of water on the basis of Neuzil's work [Neuzil, 1982].

Table 4 shows calculated values in the range of 2 10"2 to 6 10"2, which are larger than 10"5.

On this site, a lithostratigraphic study has shown that the Toarcian-Domerian formation

could be divided into three structural units: a Toarcian claystone [692-772 m deep], a "liassic"
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sandstone [772-782 m deep] and a Domerian claystone [782-855 m deep]. Al l the calculations

performed by the present approach concerned both claystones. The results are given in Tables 2 and

3. On the basis of the results, the following comments can be made:

• Biot's coefficient a and hence the other poroelastic properties are extremely sensitive

to the "undrained" mechanical parameters, Eu and vu, and the specific storage

coefficient Ss. It should be mentioned that the calculated variation ranges in tables 1

to 3 have to be compared with the strong effect of natural variability associated with

mechanical parameters. In rock mechanics, natural variability induces currently

variations of up to 100 %.

• The effect of porosity § is small.

• Values of the calculated bulk modulus of the matrix, Ks are small compared to that of

sandstone and limestone [Rice and deary, 1976; Charlez, 1997]. This may be due to

two features that may contribute to diminish the matrix rigidity: (1) a significant

isolated porosity; (2) presence of dispersed clay that may adhere and coat the quartz

and carbonate grains and diminish the matrix rigidity.

Figure 1 shows the calculated Biot's coefficients of the Toarcian-Domerian formations and

experimental values from tests on other rocks (especially on sandstone and limestone). In Figure 1,

error bars are calculated from results in Table 2 and 3 by considering the widest variation ranges.

Results of the Callovo-Oxfordian formations are not plotted since the calculated variation range is

too wide.

The comparison of results with published values is difficul t due to lack of experimental data

for deep argillaceous rocks. As mentioned, this is mainly due to the difficulty in measuring such

properties in the laboratory. Moreover, the rocks considered in Figure 1 have a liquid phase

organization (free water and bound water), which is very different from that of argillaceous rocks

and we feel that this organization and the corresponding physical properties may influence
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significantly the macroscopic poroelastic properties. In particular, bound water related to clay

particles leads to increase the compressibility of the solid skeleton since bound water is associated

with the solid phase in our approach.

Nevertheless, it is more relevant to plot the result as a function of the permeability of each

geomaterial instead of its porosity. Indeed, Figure 2 shows that a representation using permeability

seems to be a better tool to compare the different values of Biot's coefficient. In spite of the

relatively small number of data, it is interesting to note that results of the "Toarcian - Domerian"

formations confirm the general trend observed in Figure 2.

3. Transversely isotropic case

3.1 Governing equations

Ultrasonic measurements and triaxial compression tests with different loading orientations

performed on the Callovo-Oxfordian and Toarcian-Domerian formations did not show significant

any anisotropic effects. But, it is well known that most argillaceous geomaterials are typically

anisotropic. Although they exhibit many forms of anisotropy, this part focuses on the transversely

isotropic case. Transverse isotropy is often used to describe the symmetry of rocks with one

dominant system of layers, such as foliated and sedimentary rocks. In this case, there exists a

rotational symmetry around the axis perpendicular to the bedding planes. The physical properties in

all directions parallel to the bedding planes are the same and differ from those perpendicular to the

bedding planes.

In this section, the same initial/boundary value problem as in the isotropic case is

considered. Moreover, the vertical axis of the borehole is assumed to be perpendicular to the

bedding planes (Figure 3). Cheng's formalism is used to describe the mechanical behavior of

anisotropic rocks [Cheng, 1997]. Considering the previous assumptions, the following diffusion

equation is obtained (see Appendix B):
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^ = 4V2P (18)
* , YYl \ s

dt

where ca
m is the hydraulic diffusivity coefficient (m2/s) of transversely isotropic rock defined by :

k_Mfj-a2M k_ MJJ

V Mjj T] MJJ + a2 M

where k is the intrinsic permeability in the bedding planes (x-y), a is Biot's coefficient in the x-y

plane, M is Biot's modulus, Mtl is the "drained" poroelastic modulus which is given by [Cheng,

1997] :

ECEEV)
(l + v)(E'-E'v-2Ev'2 )

where E is the "drained" Young modulus in the x-y plane, E' is the "drained" Young's modulus in

the Oz direction (i.e. perpendicular to the x-y plane), v is the "drained" Poisson's coefficient in the x-

y plane (defining the lengthening deformation in the x-y plane due to loading in the x-y plane), v' is

the "drained" Poisson's coefficient associated with the Oz direction (defining the lengthening

deformation in the x-y plane due to loading normal to the x-y plane). The moduli M1} and Mw
u

are related to each other by the following relationship:

Mjj=Mfj-a 2M (21)

By comparing equations (5) and (18) one obtains the following relationship, which defines

the specific storage coefficient of a transversely isotropic rock :

pfl g MMu
n-a

2M

This relationship is a generalization of the Green and Wang [1990] equation to the

transversely isotropic case.
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3.2 A method for  determining poroelastic properties from Ss

Considering a transversely isotropic rock, 8 poroelastic constants are required in order to

study its hydromechanical behavior : 5 "drained" moduli My, 2 Biot's coefficients a (parallel to the

bedding planes) and a' (perpendicular to the bedding planes), and a Biot's modulus M [Cheng,

1997]. Moreover, the 5 "drained" moduli can be replaced by 5 "undrained" moduli MUy, which are

easier to measure in the laboratory:

Mn=Mu
n-a

2M
M12=M»n-a>M
M13 = Mu

13-aa'M
M33=M l

3
l
3-a'2 M

As for the isotropic case, "micro-mechanical" assumptions are required to obtain all the

poroelastic properties in a simple way: "micro-isotropy" and "micro-homogeneity" assumptions.

The latter is described in the first section of this paper.

The "micro-isotropy" assumption is directly associated with the anisotropic geomaterials:

the solid constituents that compose the porous material are isotropic at the microscopic (pore and

grains) level. The macroscopic anisotropy is of structural origin, i.e. a consequence of directional

pore or microcrack arrangements. Both assumptions, "micro-isotropy" and "micro-homogeneity"

allow us to relate the bulk modulus of the matrix Ks to other poroelastic properties according to the

relationship [Cheng, 1997]:

M= K*  Ks T- (24)

Ks

where

K* = -(Mn+M33+2M12 +2M13) = -(Mu
u +M3

i
3+2Mf2 +2MU

13 -3a2 -a'2+2aa')
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(JC ~~ X
+  M12 + M13

3KS

_ Mfj + Mf2 + Mf3 -2a2M- aa' M

3KS

2M13 +M33 _ 2MU
13 + Mu

33 -a'M-2aa'M
a-I — -1 —

(25a,b,c)

In the expression of K*  and in equations (25b,c), "drained" moduli My are replaced by

"undrained" moduli MUy from relations (23,a,b,c,d).

Finally, the 4 equations (22), (25b), (25c) and (24) where parameter K*  is replaced by (25a)

constitute the following system (I) of nonlinear equations with 4 unknowns, a, a', M and Ks :

(I)

Pfig Pflg

- 3aKs + 3KS +2a2M + aa' M - (Mu
n + Mu

n + Mu
l3 ) = 0

- 3a!Ks + 3KS + 2aa'M + a'J M- (M33 + 2MU
13 ) = 0

- — ( Mu
u + Mu

33 + 2Mu
n + 2MU

13 ) + —(3a2+a'2 +2aa'

+ (l-(j))MKs+^-MK2
s-K

2
s=0

In order to solve system (I), the following data are required: connected porosity §, specific

storage coefficient Ss and "undrained" moduli My which can be calculated from elastic moduli Eu,

EtU, vu and v'u (see Appendix B).

3.3 Application

In its research program of safety studies of geological waste disposal, the French Institute

for Nuclear Protection and Safety (IPSN) is studying, at the Tournemire site near Roquefort,

Aveyron, France, a geological formation constituted by claystones of Toarcian. This site has been

selected by IPSN because of its geological simplicity and also because a former railway tunnel

gives access to the center of the Toarcian formation. The tunnel crosses a 200 m-thick formation of

claystones (Toarcian) covered by more than 250 m of limestone (Dogger).
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System (I) has been solved numerically with petrophysical [Barbeau and Boisson, 1993],

hydrogeological [Boisson et al, 1998] and mechanical [Niandou et al., 1997] data from the

Tournemire site. The results oîin-situ "Pulse-tests" performed at this site are given in Table 5. The

porosity, which was measured with a mercury porosimeter is in the range of [2.2-4.2 %] [Barbeau

and Boisson, 1993].

The inequality a> 10~5 was checked by using the same compressibility value C*=3 10" Pa"

as for the previous calculations in isotropic claystones. The "undrained" poroelastic parameters Eu,

E'u, vu and v'u were calculated from the following empirical equations, which were established by

Niandou et al. [1997] from their mechanical data:

E"= E's - (E's - E'o) ea(p/pV (26)

with E's= 17 GPa; E'o =4 GPa ; oc=0.032

Eu=Es-(Es-E0)e
/3(p/pV (27)

with Es= 45 GPa; E0=22 GPa ; (3=0.016

v^v's-fv's-v'oje- ̂ (28)

with v's =0.75 ; v'o = 0.2 ; y=0.0068

^vs-(vs-vo)e-À(p/pV (29)

with vs =0.2 ; v0 = 0.12 ; À = 0.013

In these equations, parameters p and p*  are the mean stress and a reference value (p*=l

GPa) respectively. The parameters with subscript "0" are the initial values of elastic parameters for

p < 0 and those with subscript "s" the asymptotic values for very high stress levels (i.e. at great

depth).

In Table 6, the elastic parameters Eu, E'u, vu and v'u were calculated considering the depth of

the hydraulic tests. Note in Table 6 that a strong difference exists between the moduli Eu and E'u

(ratio greater than 3) due to the significant anisotropic behavior of this claystone.
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A numerical globally convergent method was used to solve the nonlinear system (I) of the

equations [Press et al., 1992] From the results obtained with different porosity values given in

Table 6, the following remarks can be made:

(1) Values of Biot's coefficient a and bulk modulus of the matrix Ks are consistent with the

values for other sedimentary rocks [Rice and Cleary, 1976; Charlez, 1997].

(2) Considering a constant specific storage coefficient and constant porosity (tests 4 and 5),

the changes in properties a and M induced by "undrained" moduli changes with depth are

small, below 6%.

(3) Values of Biot's coefficient perpendicular to the bedding planes a1 are large and greater

than 1. These values may be explained by the strong difference between Young's moduli

parallel to the bedding planes Eu and those perpendicular to the bedding planes E|U. Indeed,

the ratio between Eu and E'u is 3.5 on average (see Table 5), which is very high for an

argillaceous rock. By comparison, for schists, which are highly anisotropic, typical ratios

given by Talobre [1967] are in the range [1.2-2]. Schists habitually have macroscopic joints,

which can evolve into planes of weakness and on the contrary, Tournemire argillaceous

rocks are macroscopically homogeneous [Barbeau and Boisson, 1993]. Consequently, the

high Eu/E'u ratio obtained by Niandou et al. [1997], suggests that the samples were initially

damaged and have open fractures/bedding planes due to the decompression of the rock.

When mechanical loading was applied in order to measure the Young modulus E|U, the strain

measurement was certainly associated with the closure of such open fractures/bedding

planes and not representative of the solid skeleton deformation. Consequently, the values of

parameter E|U are questionable and this leads to an inconsistent and unrealistic set of data for

the porous, transversely isotropic argillaceous rock at the Tournemire site. This

inconsistency may explain the large values of Biot's coefficient a' compared to Biot's

coefficient for the in-bedding plane a.
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4. Conclusion

In our opinion, this paper is primarily of methodological interest. Considering an isotropic

clayey rock, this method allows us to determine its poroelastic properties in a simple way: it is

based on the resolution of a binomial equation (equation 11), which requires data from conventional

mechanical and hydrological tests. No special hydromechanical tests, which are difficul t to perform

on low-permeability materials, are required. Applications to deep argillaceous formations, which

are being studied for deep disposal in France, have shown that the calculated poroelastic properties

are in satisfactory agreement with direct experimental measurements. Nevertheless, sensitivity

analyses have shown that the method is very sensitive to input data, especially the specific storage

coefficient and the "undrained" Young's modulus. In this respect, this method can be used as a first

approach to rapidly estimate poroelastic properties of low-permeability media by integrating

existing data from different scientific fields.

This method was generalized to the transversely isotropic case, which is more representative

of sedimentary rocks. In particular, a theoretical relationship was established between the specific

storage coefficient and anisotropic poroelastic properties. An application to an anisotropic

argillaceous rocks from the Tournemire site in southern France confirmed that the approach is very

sensitive to the input parameters, both mechanical and hydrogeological. The more accurate these

parameters are, the more efficient the method. This fact underlines the need to continue improving

in situ experimental techniques in order to obtain data that are not only more accurate but also more

representative of the field conditions.
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Appendix A. Consistency of the specific storage coefficient formulation

(equation 6) with the Green and Wang [1990] equation

S.

In this paper, the specific storage coefficient Ss is expressed as:

1 3KU + 4G

pf'g M 3K + 4G
(Al )

where Ss is the specific storage coefficient, p is the pore fluid density, g is gravity, M is Biot's

modulus, K is the "drained" bulk modulus, Ku is the "undrained" bulk modulus, G is the shear

modulus. In order to obtain the same formulation as that of Green and Wang [1990], consider the

following "micromechanical" and compatibility equations:

, K
a = l — (A2)

1 =a-<t>  l 0
M K, Kfl

Using equation (A4) to eliminate Ku we obtain:

s< 1 (K iSL A
P*g

(A3)

(A4)

(A5)

From equation (A5), consider the following form:

Pflg

K_ 4_G_ 2a -
4G 4G

i a(l-a)—
3K 3K

(A6)

or

Pflg

1 \a 4G ' 1 a(l-a)
M K

(A7)

From equation (A3), we have
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M Ks \Kfl Ks

And from equation (A2):

K

1-a

Introducing equation (A9) into equation (A8), we obtain:

1 a(l-a) 1 i_
M~ K " I I , K.

Introducing equation (A 10) into equation (A7):

a
3

(K + -(
K fl

(A8)

(A9)

(A10)

(AH)

Equation (A2) can be written as follows:

K K if
(A12)

Introducing equation (A 12) into equation (All) , developing the term

3

and considering

the expression (A2) of Biot's coefficient, we obtain the Green and Wang [1990] equation:

Ss=-Pjlgfl.
K T

4G(1-K/Ksy
K + 4/3G

(A13)

Consequently, our formulation of the specific storage coefficient (i.e. equation 6) is consistent with

that of Green and Wang [1990].
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Appendix B. Expression of the specific storage coefficient for a transversely

isotropic rock

B.l Assumptions

As for the isotropic case, an infinitely long and vertical borehole is drilled. A cylindrical

coordinate system is considered. Axi s Oẑ  which coincides with the axis of the borehole, is

perpendicular to the bedding planes and constitutes an axis of symmetry (Figure 3). Cheng's

formalism is used [Cheng, 1997]. As for the isotropic case, consider the following assumptions :

• the vector of displacement u is purely radial : u = u(r,t)er where e  ̂is the radial unit vector

of a cylindrical coordinate system.

• the boundary conditions far from the borehole wall, are written as follows:

P(r -^•ao,t)  = P0 or ÔP/ôr = 0 ( hydraulic condition)

trs  ̂- 0(no volumetric strain) or crr=<Jo (mechanical condition),

tr : trace operator; § : strain tensor; P : pore fluid pressure ; ar : radial component of the total

stress tensor JX, Go '• initial lithostatic pressure.

B2. Constitutive equations

Two constitutive laws are introduced. The first is mechanical and is defined by:

rr

where

Mn =•

Mn
M12

Mn

0

0

0

0
0
0

M
33

0
0
0

0
0
0

M 44

0
0

,2E(E'-Ev" )
•v)(E'~E'v-2Ev '2

0
0
0
0

M55

0

0

0

0

0

0

M55_

£ee
£zz

YrQ

ÏOz

Xrz.

a

a

a'

0

0

1°

(P-Po)

,2

(l + v)(E'-E'v-2Ev'2

(Bl)
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E'Ev' . . El2(l-v)
^  M33 =

E'-E'v-2Ev'2 ' E'-E'v-2Ev'2

G ^ ^ U G '

<^n; <^ee,crzz, Tre, TQZ, xrz. are the components of the total stress tensor in the cylindrical

coordinate system.

Moduli E, v and G are, respectively the "drained" Young's modulus, "drained" Poisson's

coefficient and shear modulus. Poroelastic properties a and M are Biot's coefficient in the x-y plane

and Biot's modulus, respectively.

Symbol ' indicates poroelastic properties in the axis Oz, perpendicular to the bedding planes.

Properties with no symbol ' are associated to the bedding planes. "Undrained" moduli are related to

"drained" moduli by:

'  M11=Mf ]-a
2M

M ]2=Mf2-a
2M

M13 = Mu
13-aa'M

M33=M33-a'2 M

The second hydromechanical constitutive law is [e.g., Coussy, 1995]:

~- = —(P-P0) + aerr + as09 + a' s2Z (B3)

where m is the liquid mass supply (the variation of fluid volume per unit reference volume), zn\ see

and Szz are the components of the strain tensor in the cylindrical coordinate system.

B.3 Field equations

In a cylindrical coordinate system, equilibrium equations are expressed by:
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- T0r,O
r

û0t0 2  ̂ âẑ O (B4)
r r

Introducing equation (Bl ) into the equilibrium equations (B4), we obtain:

MJJ srr r + M]2 s0d r + M13 szz r - cc6Pr +-M44 yr9 +
\ (B5a)

+ M55 Yrz'z +

0 +M13szz<9 -
(B5b)

=o

M55 7rz,z +-M55rez,0 +M13srr,z +M13£O0,z +M33£zz,z
r (B5c)

-aSPz+-M55yrz=0
r

Under the condition of purely radial displacement i.e. u = u(r,t)er, the strain tensor may be

simplified in the following way:

s =

' ^ 0 0
Ôr
0 u/r 0
0 0 0

(B6)

. 7. du u
where trs = divu = h —

ôr r

By introducing components of the strain tensor in equations (A5a,b,c) and considering the pore

fluid pressure P, one obtains the following differential equation :

. . ô2u . . d(u\ dP 1 / x e w (du u\ n m̂
M] j—j + Mj2—\~\-a— + -(Mjj-M ]2)\~ \ = 0 (B7)

dr or\r ) or r y or r )
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or

d (du u
— — + _
dry ôr r,

tre

= «
8P_

Ôr
(B8)

Integration of equation (B8) in one dimension r gives:

Mntrs = aôP + C(t) (B9)

where C(t) is an arbitrary function of time. The following boundary conditions

SP(r -^-co) = 0 (i.e.P = P0) and trs(r ->cc) = 0 (no displacement and hence no strain) yields:

C(t)=0,

hence (B10)

The plane strain condition (u - u(r,t)er) gives szz=0 and allows us to simplify the constitutive law

(B3):

pfl M
(Bll )

By substituting equation (BIO) into equation (Bll) :

M
ÔP ( +

Mu M M}]

(B12)

Considering a Darcian flow, the fluid mass balance can be written in the form:

Ô

dt

m

7

Combination of equations (B12) and (B13) yields:

(B13)

+ a2M

MM il
(B14)

Note that from equation (B2) Mfj = Mn +a2M, equation (B14) can be written in the form:
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lM- ÔP = p£g-VzP (B15)
MMJJ F n &

Comparison of (B15) with equation (5) commonly used in hydrogeology gives the following

expression:

Ss - 1 Mn (B16)
M
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Table and figure captions

Table 1. Sensitivity analysis for Callovo-Oxfordian Claystone (375-478 m deep) from the Paris

basin

Table 2. Sensitivity analysis for Toarcian Claystone (692-772 m deep) from Paris basin.

Table 3. Sensitivity analysis for Domerian Claystone (782-855 m deep) from Paris basin

Table 4. Hydrogeological properties of Toarcian-Domerian formations [Cellier, 1998]

Table 5. Hydrogeological and mechanical parameters of the Toarcian formation of the Tournemire

site.3 Boisson et al. [1998]; b Niandou et al. [1997].

Figure 1. Biot's coefficient a as a function of porosity for Toarcian-Domerian claystones. Also

shown for comparison are published values of a for other geological formations [Rice and Cleary;

1976, Charlez, 1997; Fabre and Gustkiewicz, 1997]. The dashed line represents the values given by

Boutéca's model [Boutéca andSarda, 1991].

Figure 2. Biot's coefficient a as a function of permeability for Toarcian-Domerian claystones. Also

shown for comparison are published values of a for other geological formations [Rice and Cleary;

1976, Charlez, 1997; Fabre and Gustkiewicz, 1997]. The dashed line represents the values given by

a logarithmic regression.

Figure 3. Definition sketch for a vertical borehole in a transversely isotropic rock.

Figure 4. Horizontal Biot's coefficient a as a function of permeability for the Tournemire claystone.

Also shown for comparison are published values of a for other geological formations [Rice and

Cleary; 1976, Charlez, 1997; Fabre and Gustkiewicz, 1997]. The dashed line represents the values

given by a logarithmic regression.



Table 1. Sensitivity analysis for

Callovo-Oxfordian Claystone (375-478 m deep) from the Paris basin

32

Measured
specific storage

coefficient
(m )

(10"'-
3 10"6)

1.6 10"6

1.6 10"6

1.6 10"6

Measured
"undrained"

Young's modulus
Eu

(GPa)b

4.9

(2.3-11)

4.9

4.9

Measured
"undrained"

Poisson's Ratio
vuDb

0.3

0.3

(0.17-0.4)

0.3

Measured
Porosity
(j) (%)

14

14

14

(9-18)

Calculated
Biot's

coefficient a

Aa Ar

0-0.69 200

0.25- 95
0.7

0.31- 62
0.59
0.37- 13
0.42

Calculated
Biot's modulus

M (GPa)

Aa (GPa) Ar

5.46- 124
26.32

7.69- 20
9.36

7.43- 22
9.31
7.69- 8
8.36

Calculated "drained"
bulk compressibility

K (GPa)

Aa (GPa) Ar (%)

1.51-4.08 92

1.42-4.56 105

1.78-4.94 94

2.58-3.02 16

Calculated bulk
modulus of

matrix Ks (GPa)

A a(GPa) A r(%)

4.12-4.82 15.6

1.9-15.27 156

2.56- 130
12.01

4.48-4.8 7

Abbreviations Aa and Ar indicate absolute variation and relative variation (in %) respectively.
Measured values are mean values. Variation ranges of experimental values are given in brackets.
Considering the variation range (A-B), relative variation Ar is calculated by:

2(B-A)
A , =•

(B + A)

aCellier [\99S]
b Ghoreychi [1998]
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Table 2. Sensitivity analysis for the

Toarcian Claystone (692-772 m deep) from the Paris basin

Measured specific Measured Measured Measured Calculated Calculated Calculated "drained" Calculated bulk
storage "undrained" "undrained" Porosity Biot's Biot's modulus bulk compressibility K modulus of matrix

coefficient Young's Poisson's Ratio <|> (%) coefficient a M (GPa) (GPa) Ks (GPa)
(m"1) modulus Eu

 V
u A a A r A a ( G P a) A r A a ( G P a) A r ( %) A a( G P a) A r ( %)

Vo)
7.5 10" -1 .3 10"6 3.48 0.29 15 0.14- 56 9.03- 43 2.18-2.49 13 2.89-2.92 1

0.25 13.99

1.10"6 (2.6-7.3) 0.29 15 0.18- 40 11.19- 3 1.7-5.02 99 2.07-6.84 107
0.27 10.87

0.17- 200 11.02-
0.21 10.96

0.19- 5 10.98-
0.20 11.02

1. 10"6 3.48 (0-0.34) 15 0.17- 200 11.02- 0.5 3.13-8.56 93 1.03-3.97 118

1. 10"6 3.48 0.29 (13.6-16) 0.19- 5 10.98- 0.4 2.32-2.35 0.3 2.90-2.92 0.7

Abbreviations Aa and Ar indicate absolute variation and relative variation (in %) respectively.
Measured values are mean values. Variation ranges of experimental values are given in brackets.
Considering the variation range (A-B), relative variation Ar is calculated by :
2JB-AI

(B + A)
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Table 3. Sensitivity analysis for

Domerian Claystone (782-855 m deep) from the Paris basin

Measured Measured Measured Measured Calculated Calculated Calculated "drained" Calculated bulk
specific storage "undrained" "undrained" Porosity Biot's Biot's modulus bulk compressibility modulus of

coefficient Young's modulus Poisson's Ratio § (%) coefficient a M (GPa) K (GPa) matrix Ks (GPa)
(m1)3 Eu v11 Aa Ar Aa(GPa) Ar Aa(GPa) Ar(%) Aa(GPa) Ar

(GPa) (o/o) (oA

9.1 10"7 (2.6-10.6) 0.21 13.8 0.16- 51 11.53- 4 1.19-5.28 126 1.42-7.19 134
0.27 11.96

9.1 10"7 5.44 (0.05-0.42) 13.8 0.17- 69 11.49- 5 1.66-9.85 142 2.02- 153
0.35 12.05 15.18

9.1 lu"7 5.44 0.21 (13.2-14.4) 0.199- 4 11.56- 0.5 2.667-2.698 1 3.33-3.34 0.3
0.192 nm

Abbreviations Aa and Ar indicate absolute variation and relative variation (in %) respectively.
Measured values are mean values. Variation ranges of experimental values are given in brackets.
Considering the variation range (A-B), relative variation Ar is calculated by :

(B + A)
aVariation range is not given by Cellier [1998]
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Table 4. Hydro geological properties of the Toarcian-Domerian formations

[Cellier, 1998]

Formation Depth (m) Permeability
(m/s)

Specific storage
coefficient

(m'1)

Calculated
dimensionless
parameter a

Toarcian 692-772 3 10"13-210"12

Domerian 782-855 6.5 10"13

7.5 10"7-1.3 10"6

9.1 10"7

2. KT-6-2 ^-2

3 10-2



Table 5. Hydro geological and mechanical parameters of the

Toarcian formation from the Tournemire site.

a Boisson et al. [1998]; b Niandou et al. [1997].
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Test location
from tunnela

Hydrogeological
parameters"

Horizontal Specific
permeability storage

(m/s) coefficient
(m"1)

Vertical
"undrained"

Young's
modulus E'u

(GPa)

Mechanical

Horizontal
"undrained"

Young's
modulus Eu

(GPa)

parametersb

Vertical
"undrained"
Poisson's "
coefficient

v'u

Horizontal
"undrained"
Poisson's

coefficient
vu

Test 2
61.5-63 m

Test 3
146.3 - 147.8

m

Test 4
103.6-105.1

m

Test 5
41.5-43.0 m

1.3 10"12

6.7 10-14

10,-13

v i l2.3 10"
-1.3 10"12

3 10"

6. 10"

7. 10"

7.10"7- 1.10"6

6.58

7.44

7.10

6.58

24.58

24.27

24.92

24.40

0.23

0.23

0.23

0.22

0.13

0.13

0.13

0.13
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Table 6. Estimates of poroelastic properties of Toarcian claystone

from Tournemire site

Test Porosity Calculated poroelastic properties

Horizontal Biot's Vertical Biot's Biot's Bulk modulus of
coefficient coefficient modulus the matrix

a a' M(GPa) Ks (GPa)
2

3

4

2.2
2.4
2.2
2.4
2.2
2.4

0.21
0.22
0.49
0.55
0.49
0.54

1.66
1.56
4.02
3.67
4.63
4.31

30.59
30.68
18.57
19.48
16.49
17.14

36.03
36.41
37.09
37.94
36.02
36.62

2.2 0.46 4.59 16.29 35.08
2.4 0.51 4.31 16.84 35.62
2.2 0.47 7.96 10.51 34.08
2.4 0.53 7.70 10.72 34.31
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