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Statistica l Analysi s of Fisher et al. PBPK Model of Trichloroethylen e Kinetic s
Frederic  Yves Bois

Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France

Two physiologically based pharmacokinetic modeis for trichloroethylene (TCE) in mice and humans
were calibrated with new toxicokinetic data sets. Calibration is an important step in model
development, essential to a legitimate use of modeis for research or regulatory purposes. A
Bayesian Statistical framework was used to combine prior information about the model Parameters
with the data likelihood to yield posterior parameter distributions. For mice, these distributions
represent uncertainty. For humans, the use of a population Statistical model yielded estimates of
both variability and uncertainty in human toxicokinetics of TCE. After adjustment of the modeis by
Markov chain Monte Carlo sampling, the mouse model agreed with a large part of the data. Yet,
some data on secondary metabolites were not fit well. The posterior parameter distributions
obtained for mice were quite narrow (coefficient of Variation (CV1 of about 10 or 20%), but these
CVs might be underestimated because of the incomplete fit of the model. The data fit, for humans,
was better than for mice. Yet, some improvement of the model is needed to correctiy describe
tnchloroethanol concentrations over long time periods. Posterior uncertainties about the population
means corresponded to 10-20% CV. In terms of human population variability, volumes and flows
varied across subject by approximately 20% CV. The variability was somewhat higher for partition
coefficients (between 30 and 40%) and much higher for the metabolic Parameters (Standard
deviations representing about a factor of 2). Finally, the analysis points to differences between
human males and females in the toxicokinetics of TCE. The significance of these differences in
terms of risk remains to be investigated. Key words: Bayesian, human, Markov chain Monte Carlo,
mouse, PBPK model, TCE. toxicokinetics, tricholoroethylene, uncertainty analysis, variability.
— Environ Health Perspect 108(suppl 2):275-282 (2000).
http://ehpnet1.niehs.nih.gov/docs/2000/suppl-2/275-282bois/abstract.html

New physiologically based pharmacokinetic
(PBPK) modeis of trichloroethylene (TCE) in
mice and humans have recently been pub-
lished (1,2), rogether wich new toxicokinetic
data secs. These modeis, prior to their use in
research or regularion, should be carefully
calibrated by confroncation with the data. It
is mosr efficient in terms of information use
and from a Statistical point ofview to com-
bine two forms of information: prior knowl-
edge and data. Neither source of information
is compleie. If prior knowledge were suffi-
cient, experiments would not need to be per-
formed, but data alone are insufficient to pin
down all parameters o fa complex PBPK
model to reasonable values. Prior knowledge
can be summarized äs prior parameter distrib-
utions. These can be obtained from the scien-
tifi c l i terature, from specific in vitro
experiments, and, äs is the case here, from fit -
ting previous data. The data [in this case the
new data provided to us by Fisher (2)] are
incroduced through the use of a likelihood
function. A Bayesian Statistical framework
gives rigorous ruies co combine ehe prior dis-
tributions with the data likelihood, to yield
posterior parameter distributions. In the case
of complex modeis, like those described here,
the posrerior parameter distributions can be
obtained by numerical Markov chain Monte
Carlo (MCMC) techniques (3,4}. This staris-'
tical methodology is gaining interest and is
establishing itself for the calibration and

validation ofPBPK models (3,5-5). Beyond
improving the fit , this method also provides
distributions of prediction estimates direcdy
usable äs inputs for uncenainry analysis of
cancer dose-response relarionships.

An interesring aspect of the human data
analyzed here is that they have been collecred
individually on a number of male and female
volunteers. A hierarchical population model
(4.5) deconvolves the various levels of vari-
abiliry present in the data. Such a model, of
which the PBPK model is just a componenc,
is easily calibrated with Bayesian numerical
methods. This öfters a unique oppormniry to
examine separately the important issues of
variability and uncertainty in human toxico-
kinetics of trichloroethylene.

Method s
Data

Mice. Groups of male B6C3F] mice (body
weight [bw] 25-30 g) were exposed to TCE
or its mecabolites by intravenous (i.v.) injec-
tion (9) or by oral gavage ( l ) .

All  i.v. doses were equal to 100 mg ofthe
compound administered per kilogram of
body weighr. After chloral hydrate (CH)
administration, venous concentrations of CH,
free trichloroethanol (TCOH), trichloroacetic
acid (TCA), and dichloroaceric acid (DCA),
äs well äs the amount of ur ine excreted
metabolites, were recorded at various rimes

after dosing. Similarly, after TCA i.v. dosing,
venous concentrations of TCA and DCA, äs
well äs the amount of DCA excreted in urine,
were recorded. Following TCOH dosing,
venous concentrarions ofCH, TCOH, TCA,
and the urine-excreted amounts of TCOH
and glucuronidated trichloroethanol
(TCOG), were measured. Finally, after DCA
dosing, venous concentrations and urine-
excreted amounts of DCA were measured.

When trichloroethylene was administered
by gavage in corn oil, doses of 300, 600,
1,200, and 2,000 mg/kg bw were used. TCE
concentrations were measured in venous
blood, liver, fat, lung, and kidney. CH and
TCOH concentrations were recorded in
venous blood, liver, lung, and kidney. TCA,
DCA, and TCOG concentrations were
obtained in venous blood, liver, and kidney.
The quanrities of TCA and TCOG excreted
in urine were also recorded.

Additional data, published by Templin
et al. (10), were partly used. Groups offour
male B6C3F i mice (bw 27 g) were gavaged
with 3.8 mmol/kg (500 mg/kg) TCE. The
venous blood concentrations of TCE, TCA,
and DCA were measured ar various rimes.

Humans. A group of21 volunteers (10
females and 11 males) were exposed by
Inhalation to 50, 60, or 100 ppm TCE for
4 hr (2). Body weight and adiposity were
recorded for each subject. The venous blood
concentrations ofTCE, TCOH, and TCA
were measured during and after exposure. For
some subjects, the exhaled air concentration
of TCE was also recorded at various rimes
after exposure. Finally, the cumulaced quanri-
ties ofTCA and TCOH glucuronide excreted
in urine were recorded, The dara for each
individual were available to us.

Toxicokinedc and Statistical Models

Mice. The description of the physiological
model used for mice can be found in Abbas
and Fisher ( /). The model equarions were
transcribed to a format suitable for MCSim
(11). Three modificarions were made to the
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model, afrer consukarion with the original
auchors. a) Metabolism of TCE in the lung
was turned off. b) For several parameters, the
scaling power of body weight was changed
from 0.74 to 0.75 for standardization with
the model ofClewell et al. {12}. c) The vol-
umes ofthe "body" and poorly perfüsed com-
partments, and the blood ßow to the body
compartment, were computed by difFerence
at each Iteration so that the sum of the organ
volumes equaled 82% ofthe body weight and
the sum of organ flows equaled cardiac out-
put. Given Ais reparameterizarion, the model
had a total of 57 independent parameters.

The starisrical model used for mice lumps
uncertainry and variability, since the animal
data were aggregated (only the mean and
Standard deviation [SD] for several animals
were provided). For a schemaric ofthe model,
see for example, Bois (13}. Various concen-
trations or quantities (y) were measured. The
expected values of these measuremenis are a
fünction ( f ) of exposure level (E), time (t), a
set of physiological parameters of unknown
values (6), and a set of measured, covariate
parameters ((p), such äs body weight. E, t, 6,
and <p are experiment specific. All animals in
an experiment were supposed to have
behaved similarly, from a toxicokineric point
of view. The funcrion / is the pharmacoki-
neric model described above. The concentra-
tions or quantities actually observed are also
affected by measurement error and inter-
individual variability. Only aggregated data

Table 1. Values (2} or distributions used for the assay
SDs, for each of the measured end points of the mouse
data set.

Parameter SD

1.25CV
CL
CLU
GF
CK
CCHL
CCHLU
CCHV
CCHK
CTCL
CTCV
CTCK
CDGL
CDCV
CDCK
COHL
COHLU
COHV
COHK
COGL
COGV
COGK
ACHKR
ATCKR
ADCKR
AOHKR
AOGKR

1.25
LogUniform distribution

1.39
1.33
1.11
1.27
1.25
1.13
1.16
1.19
1.21
1.24
1.24
1.40
1.17
1.16

• 1.21
1.19
1.41
1.27
1.34

LogUniform distribution
LogUniform distribution
LogUniform distribution
LogUniform distribution
LogUniform distribution

were available, and the corresponding errors
were assumed to be independent and log-nor-'
mally distributed, with mean zero and vari-
ance <T2 (on the log scale). The variance
vecror O2 had 27 components for mice, most
of them known by repearing the experiments
(Table l). The unknown experimental vari-
ances were sampled with a Standard non-
informative prior distribution P(c^) - Of2

(14). It was assumed that each 9 paramerer
was a priori distributed log-normally (except
for PCCH, the fraction TCE converred to
CH, distributed normally), with averages M
and variances S (in log scale).

A major advantage of physiological
modeling is to provide a priori information
on several of the mean parameter values for
mice. Values for the hyperparameters M were
set on the basis of the parameter values used
by Fisher (2), or when applicable, on the
basis of the posterior parameter distributions
obtained from the analysis of the Clewell
et al. model (12,13). To set S, a distinction

.was made between the physiological parame-
ters or partition coefficients (which are quite
well known) and the other metabolic or phar-
macokincric parameters (which are model
specific and littl e known a priori). For the
first group of parameters uncertainries of the
order of 20-50% were assigned (3,5,6). For
the second group of parameters, a "vague"
distribution was assumed and S was set to
correspond to a factor between 2 ("quite
uncertain") or 5 ("very uncertain"). All priors
on p were truncated to ±2 X S or ±3 X S to
avoid reaching unrealistic values. Table 2
gives for mice the values used for exp(M)
(i.e., the geometric means) and exp(S) (i.e.,
the geometric Standard deviation [GSD]),
both of which lie on the natural scale.

Humans. The PBPK model for humans is
a simplification of the mouse model.
Basically, in addition to TCE, only the distri-
bution ofTCOH and TCA in blood, liver,
kidney, and rest of the body is described by
physiological compartments. CH is not mod-
eled explicidy: a fraction ofTCE metabolized
forms TCOH while the rest forms TCA.
Formation of DCA is not modeled. A frac-
tion ofTCOH is glucuronidated to give
TCOG, which is supposed to be immediately
excreted in urine. Four modificarions to the
original model were introduced. For several
parameters, the scaling power of body weight
was changed from 0.74 to 0.75 for standard-
ization with the model ofClewell et al. (12).
The volumes ofthe body and poorly perfüsed
compartments and the blood flow to the
body compartment were computed by dirfer-
ences at each Iteration so that the sum of the
organ volumes equaled 82% of the body
weight and the sum of organ flows equaled
cardiac Output; the quantity of TCOG
excreted is in TCOH equivalents, rather than

in TCOG equivalents. The Michaelis-
Memen coefficient K^ (labeled KMTCOH)
for the formarion of TCOG was reexpressed
äs the ratio VmaJ^-m ^ot easier Monte Carlo
sampling (preliminary runs showed that
Vnux wi1^ Kn, for that reaction are highiy cor-
related). The model had 33 independent
parameters.

The starisrical model describing uncer-
tainries and variabilities in human data was
censtructed using a hierarchical popularion
approach (3,4). The model has two major
components: the individual level and the
popularion level. At the individual level, vari-
ous concentrarions or quantities (y) were
measured. The expected values of these meas-
urements are a fünction (/) of exposure level
(E), time (t), a set of physiological parame-
ters of unknown values (Q), and a set of meas-
ured, covariate parameters ((p), such äs body
weight. E, t, 9, and (p are experiment specific.
The fünction f is the human pharmaco-
kinetic model. The concentrations or quanti-
ties actually observed are also affected by
measurement errors. These errors were
assumed to be independent and log-normally
distributed, with mean zero and variance (T2

(on the log scale). The variance vecror O2 had
six components for humans.

At the popularion level, each component
of the 9 parameter set was assumed to be dis-
tributed log-normally, with averages p and
variances 2? (in log scale). A priori knowledge
of p and S2 is available under the form of
Standard values for some parameters. Since
uncenainty in these average values and vari-
ances has to be acknowledged, a priori log-
normal distributions were assumed for the
popularion means p (with hyperparameters M
and S) and a Standard inverse gamma distri-
bution (15) for the popularion variances 2?.

Values for the hyperparameters M were set
on the basis of the parameter values used by
Fisher (2), or when applicable, on the basis of
the posterior parameter distributions obtained
from the analysis of the Clewell et al. model
(12,13). To set S, a distinction was made
between the physiological parameters or parti-
tion coefficients (which are quite well known)
and the other metabolic or pharmacokineric
parameters (which are model specific and littl e
known a priori). For first group of parameters
uncertainries of the order of 20-50% were
assigned (3,5,6). For the second group of
parameters, a vague distribution was assumed
and S was set to correspond to a factor of 5.
All priors on p were truncated to ±2 X S.

The ß coefficient of the inverse-gamma
prior on £2 was set to the posterior values
found in the previous analysis (13) when
applicable and to 0.22 otherwise (this corre-
sponds to a CV of 50%). The a coefficients
of the inverse-gamma priors were set to l or
6 [the latter when a posterior distribution
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had already been obcained from analysis of
the Clewell et al. data (13), which had sev-
eral groups ofsubjects]. Table 3 gives for
humans the values used for exp(M)—i.e.,
the geometric means—exp(S) —the GSD—
and the a and ß coefficienrs. For O2, a
Standard noninformative prior distribution
.PtOi2,...^,,2) - or2 x ... x 0„~2 was used.

Statistical Computation ofPosterior
Parameter Distributions

From Bayes' theorem, the joint posterior
distribution of the parameters to estimate,
P(Q, O2, p, 2?ly, (p, E, t. M, S, 2fl), in the case
of humans, is proportional to the likelihood of
the data multiplied by the parameters' priors:

P(6, CT2, p, 2?ly, (p, E, t, M, S, S2) -

/'(yie.O^E.t) • fl(91p,Z2) • P(02) •

P(plM,S) • P(2?IS2) [l]

A similar, but simpler, expression can be
obtained in the case of the mouse model. For
naice and humans, the likelihood term is
given by the normal measurement model:

log(y) - Mlog /(9,<P,E,t,)02) [2]

As mentioned above, the prior distribution
for O2 is: P((5^,...,<S^) - or2 X ... X O,"2,
with evenrually some fixed components.

For humans, the prior distribution of
each component of6 is an independent
normal distribution in log space:

Table 2. Prior and posterior distributions for the scaling coefficients of the mouse PBPK model (1). All distributions
are log-normal with truncations at ±2 SDs, except where indicated.

[3]

with truncation constraints. Each component
of p, or S2 is assigned an independent hyper-
prior distr ibution, p - N(M,S2) and
2? - inverse-gamma(a,ß), äs described in the
previous section. For mice, the p and £2 lev-
cls are not defined and prior distribution of 9
depends directiy on M and S.

Current practice in Bayesian starisrics is to
summarize a complicated high-dimensional
posterior distribution by random draws ofthe
vector of parameters. This is currently the
most effective way to perform high-
dimensional numerical integrarion. Because
there are many parameters to estimate,
Metropolis-Hasting sampling was used to
perform a random walk through the posterior
distribution. This iterative sampling proce-
dure is particularly convenient in the case of
hierarchical modeis. It belongs to a class of
MCMC techniques that has recendy received
much interesc (.3,16-21). Three independent
MCMC runs were performcd for each
species. Convergence was monirored using
the method ofGelman and Rubin (22).

Parameter

BW3

QCC"
QPC"
QLC6

QKC6

QFC"
VLUC'
VLC1'
VK^
VFC1'
WC"
Kl"
K2"
K3''
PB"
PLU'
p|ft
pKC.d

PF6

PS" .
PR"
PCHLU'
PCHL"
PCHK^
PCHB'-"
POHLU'
pom-̂
POHK1'-"
POHBC

POGLU'
POGL^
POGK"
POGB1--"
PTCUJ'
PTCL'
PTW
PTCB''
PDCLLF
FDCI.̂
POCK'
PDCB'
VMAXC1'
KM"
PCW
KRCHC'
PCTCOP
PCTCAC^
VMTCOC6

KMTCOH'
KOCHt^
KROHC'
KRW
KRTW
KFDCC'
KRDCC3

KROG^
KGBLt^

Prior di
Geometric

mean

0.03
20.1
21.8
0.2
0.09
0.054
0.007
0.05
0.018
0.063
0.05
1

17.3
1.14

16.4
2.61
1.74
2.07

30.6
0.756
1.75
1.65
1.42
0.98
1.35
0.78
1.3
1.02
1.11
1.06
0.56
1.44
1.11
0.54
1.18
0.74
0.88
1.23
1.08
0.74
0.37

38.1
0.47
0.99
0.06

309
115
16.5
15.7

1.32
1.14
0.35
1.55

20.5
1

32.8
4.61

stribution
Geometric

SO

1.11
1.08
1.08
1.08
1.22
1.14
1.22
1.07
1.22
1.12
1.07
2.72
1.24
1.36
1.13
1.6
1.2
1.6
1.15
1.21
1.21
1.6
1.6
1.6
1.6
1.6
1.6
1.6
1.6
2
2
2
2
1.6
1.6
1.6
1.6
1.6
1-6
1.6
1.6
1.15
1.57
0.01
5
5
5
5
5
5
5
5
5
5
2.72
5
5

Geometric
mean

0.0354
14.4
19.3
0.259
0.0944
0.0455
0.00654
0.0478
0.0221
0.0773
0.0503
4.18
3.46
0.0916

22.9
1.81
3.10
4.81

15.6
1.41
1.97
1.96
1.61
0.361
1.51
1.71
3.97
3.90
0.595
1.01
0.897
2.65
0.449
0.518
0.780
0.758
0.857
1.14
0.636
0.843
0.548

45.2
10.1 '
0.995
0.0493

403
119
74.4
49.9

5.58
0.133
0.546
0.596

41.7
2.62

19.9
16.4

Posterior
Geometric

SD

1,02
1.05
1.07
1.05
1.21
1.11
1.18
1.06
1.12
1.10
1.06
1.14
1.10
1.01
1.08
1.10
1.04
1.06
1.05
1.13
1.22
1.07
1.05
1.06
1.08
1.04 .
1.04
1.04
1.08
1.73
1.08
1.13
1.25
1.46
1.03
1.04
1.05
1.43
1.05
1.08
1.06
1.03
1.05
0.00380
1.17
1.09
1.08
1.11
1.14
1.13
1.18
1.08
1.12
1.09
1.14
1.16
1.08

distribution
2.5%

percentile

0.0334
13.1
16.8
0.235
0.0646
0.0373
0.00480
0.0424
0.0180
0.0646
0.0442
3.22
2.86
0.0898

19.7
1.50
2.83
4.31

14.3
1.08
1.31
1.71
1.45
0.323
1.29
1.58
3.71
3.63
0.516
0.361
0.771
2.12
0.275
0.249
0.733
0.706
0.773
0.572
0.576
0.730
0.487

42.5
9.21
0.986
0.0365

347
103
60.9
39.3
4.39
0.0983
0.472
0.489

35.5
2.13

15.2
14.2

97.5%
percentile

0.0365
16.1
22.0
0.284
0.129
0.0561
0.00900
0.0529
0.0265
0.0944
0.0567
5.47
4.14
0.0944

26.6
2.19
3.35
5.42

17.5
1.75
2.89
2.23
1.78
0.399
1.74
1.85
4.31
4.14
0.683
3.00
1.04
3.42
0.668
1.07
0.830
0.812
0.945
2.33
0.700
0.973
0.619

47.5
11.1
1.00
0.0679

478
141
90.9
64.1

7.03
0.183
0.639
0.749

48.4
3.49

26.8
19.1

• Prior set by ourselves. 'Prior based on the posterior distribution obtained previously (3|. "Prior based on Fisher's values |2).
'truncation at ±3 SDs. • For this parameter a normal distribution was used, with truncation at 0.95 and 1.
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Table 3. Prior and posterior distributions for the population averages (|i), and population SDs (£), of the scaling
coefficients for the human PBPK model.

Prior an p Prior on £ Posterior on |i Posterior on £
Parameter Geometrie mean (GSD) Geometrie mean |GSD) Geometrie mean (GSD) Geometrie mean JGSD)

QCC3

QPC8

QLC3

QKC"
QFC3

VLUC6

VLC"
VKC"
VFC3

VRC3

PB3

PLU"
p|a

PK"
PF3

PS3

PR3

POHIDr
POHL"
POHK6

POHB"
PTCLU"
PTCL"
PICK"
PTCB6

VMAXC'1

KM8

POHc
VMTCOC"
KMTCOH"
KOCHC"
KTMETC"
KRTCC''

15.2(1.16)
16.1(1.16)
0.232(1.17)
0.198(1.22)
0.0523(1.16)
0.014(1.22)
0.026(1.13)
0.00401(1.22)
0.198(1.13)
0.0483(1.13)

13.7(1.19)
0.391(1.6)
6.69(1.32)
1.08(1.6)

53(1.22)
2.7(1.23)
5.05(1.28)
0.67(1.6)
0.589(1.6)
2.15(1.6)
0.91(1.6)
0.47(1.6)
0.66(1.6)
0.66(1.6)
0.519(1.6)

43.8(1.97)
0.542 (2.35)
0.9(0.1)
1(5)
1.57(5)
1(5)
0.1 (5)
1(5)

1.41(1.12)
1.39(1.10)
1.42(1.11)

-
1.47(1.12)

-
1.37(1.10)

-
1.37(1.10)
1.37(1.10)
1.52(1.14)

-
1.52(1.16)

-
1.50(1.15)
1.49(1,15)
1.51(1.16)

-
-
-
-
-
-
-
-

1.70(1.28)
1.76(1.35)

—
-
-
-
-
-

16.3(1.08)
16.9(1.08)
0.244(1.07)
0.194(1.08)
0.0639(1.10)
0.0141(1.11)
0.0257(1.10)
0.00401(1.13)
0.196(1.05)
0.0437(1.10)

18.0(1.09)
0.386(1.18)
5.81(1.15)
1.07(1.18)

50.9(1.15)
1.50(1.14)
3.67(1.11)
0.685(1.18)
0.616(1.18)
2.16(1.18)
1.26(1.10)
0.472(1.18)
0.708(1.21)
0.668(1.18)
0.601(1.10)
4.22(1.19)
0.801(1.40)
0.730(0.041)
5.26(1.56)
2.72(1.12)
8.58(1.14)
0.301(1.22)
1.15(1,19)

1.30(1.15)
1.36(1.17)
1.20(1.12)
1.26(1.14)
1.19(1.12)
1.25(1.14)
1.14(1.08)
1.26(1.14)
1.21(1.11)
1.13(1.08)
1.21(1.12)
1.37(1,24)
1.22(1.15)
1.37(1.24)
1.32(1.20)
1.22(1.17)
1.17(1.10)
1.37(1.24)
1.37(1.25)
1.37(1.24)
1.47(1.24)
1.37(1.24)
1.37(1.24)
1.37(1.24)
1.41(1.23)
1.48(1.33)
1.96(1.65)
0.187(0.10)
1.76(1.72)
1.70(1.35)
1.51 (1.29)
1.98(1.57)
2.18(1.56)

"Prior distribution based on the posterior distribution obtained previously (3). 'Prior distribution on |i based on Fisher's values (2). A
»ague inverse-gamma (1, 0.22) was used. Tor this Parameter a normal distribution was used, with truncation at 0.6 and 1. so the
Parameters are mean and SD in natural space.
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Figur e 1. Observed versus predicted mice data values
(all concentrations or quantities) for the Monte Carlo
iteration of highest posterior probability.

Result s
Mice

For mice, 20,000 iterarions were necessary to
reach convergence of the sampler. One of
every 5 of the last 5,000 simularions of three
independent Markov chains were recorded,
yielding 3,000 sets of parameter values from
which the inferences and predictions
presented in the following were made.

Time(hr )

Figur e 2. Predicted (solid line) and observed (points)
time course of TCE concentration in liver of mice dosed
with various quantities of TCE in com oil. Error bars cor-
respond to ±2 SD.

Quality o f data adjustment. Figure l
presents the data values observed compared
with their predicted counterparts (data values
are concentrations or excreted quantities).
Predictions were made with the parameter
set of highest posterior density. For a perfect
fit , all points would fall on the diagonal
(equality of predicted and observed values).
Such an adjustment is not expected given the
analytical measurement errors in the data.

The graph is presented on log-log scale,
since the errors are assumed to be log-
normally distributed and the data span a wide
ränge. Most of the residuais are contained
within a factor of 3 along the diagonal, but
quite a few reach a factor of 10 or even a fac-
tor of 100. Figures 2-7 show all the gavage
data and corresponding predictions in the
liver äs a fünction of time. Basically the model
reproduces correcdy the profiles for TCE and
TCA. TCOH and TCOG concentrations are
less well predicted. CH and DCA concentra-
tions and TCOG excreted are rather poorly
fitted. The fact that each data point represents
a different group of animals may explain the
noise present in die data. However, some dif-
ferences between model and data appear to be
systemaric (Figure 3, for example).

Posterior parameter distributions. The joint
distribution of all parameters is obtained in
Output of die MCMC simularions. This allows
considerarion of marginal distributions (distrib-
utions of the parameters considered individu-
ally) and also ofcorrelations ofany order. Table
l summarizes die posterior distributions of the
mouse parameter values obtained in the last
1,000 iterarions ofthe three runs performed
(results of the three runs are pooled, and the
distributions are established with 3,000 values).
The geometric means can be interpreied äs rep-
resenring the. values for an "average" mouse.
Note that the columns of geometric Standard
deviations represent the sum of group variabil-
ity among mice and experimental error.
Overall, the parameters retain physiologically
plausible values.

Yet the posterior means for several param-
eters are quite far from the prior means. This
is observed for metabolic parameters or for
some partition coefficients. In particular, the
value of KM for TCE is 20 times that found
with the previous model and experiments.
SDs about these geometric means are quite
low and hover around 1.1 (corresponding to
a 10% CV, which includes uncenainry and
variability). The parameter values are there-
fore quite well identified by the data.

Very high correlations are observed
between parameter estimates for mice (up to
0.95 for KFTCC and KFDCC). Any para-
meterization neglecting to estimate these
covariances will  produce incorrect predic-
tions, sincc these parameters cannot be sam-
pled independently without producing
highiy improbable combinations and hence
highiy improbable predictions.

Humans
More than 100,000 iterarions were necessary
ro reach convergence of the sampler in the
case of human data. One of every 10 ofthe
last 50,000 simularions of three independent
Markov chains were recorded, yielding
15,000 sets of parameter values from which
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Figur e 3. Predicted (solid line) and obsen/ed (points)
time course of CH concentration in liver of mice dosed
with various quantities of TCE in corn oil. Error bars cor-
respond to ±2 SD.

Figur e 4. Predicted (solid line) and obsen/ed (points)
time course of TCOH concentration in liver of mice
dosed with various quantities of TCE in corn oil. Error
bars correspond to ±2 SD.

Figur e 5. Predicted (solid line) and observed (points)
time course of TCA concentration in liver of mice dosed
with various quantities of TCE in corn oil. Error bars cor-
respond to ±2 SD.

Predicte d Data value

Figure  B. Predicted (solid line) and observed (points)
time course of DCA concentration in liver of mice dosed
with various quantities of TCE in corn oil. Error bars cor-
respond to ±2 SD.

ehe inferences and predictions presented in
the following were made.

Qwdity ofdata adjwtment. Figure 8 gives
the observed data values versus their predicted
counterparts (data values are concentrations or
excreted quantities). Predictions were made
with the parameter set of highest posterior
densiry. The graph is presented on log-log
scale, since the errors are assumed to be log-
normally distributed and the data span a wide
ränge. Most of the residuais are contained
within a factor of2 along the diagonal. The fit
here is substanrially better than for mice.
Figures 9-11 show all the data and corre-
sponding predictions äs a function of time.
The model was adjusted to each individual's
data, using a population toxicokinetic
approach. The data are reasonably well fitted,
overall, and particularly the TCA data.
However, the concentration ofTCE in alveo-
lar air and venous blood is not adjusted satis-
factorily, given the quality of adjustment
expected from a PBPK model: The curves do
not "bend" enough (Figure 9). Another area
ofsignif icant roisfit is the prediction of
TCOH concentration in venous blood. The
predicced terminal half-life is clearly too short'
(data not shown). Yet, a good adjustment of

Figur e 7. Predicted (solid line) and observed (points)
time course of TCOG concentration in liver of mice
dosed with various quantities of TCE in corn oil. Error
bars correspond to ±2 SD.

TCOH can be obtained for the volunteers
observed up to 22 hr (Figure 10). Most ofthe
variability observed on the figures is due to
differences in Inhalation exposure levels (con-
centrations of 50, 60, or 100 ppm TCE were
used). However, a large part ofthe variability
in TCOG elimination to urine seems due to
factors other than exposure levels (data not
shown). Somewhat troublesome is the dis-
agreement between measured (albeit, approxi-
marely) fractions of body weight äs fat (VFC)
and the corresponding toxicokinetic estimates.
The estimates take into account the measured
values äs well äs what can be inferred about
the size of the tat compartment from the TCE
and other concentration data. The measured
values of VFC reach much more extreme val-
ues (han the estimates (Figure 12).

Posterior parameter distributions. Table 3
summarizes the posterior distributions of the
population means and SDs for all human
model parameters (the distributions were
established with 15,000 values). The popula-
tion means represent the values for an average
person. They are affected by uncenainty and
were each assigned a geometric mean and a
GSD (note that an approximate CV can
quickly be computed, since CV " GSD - l).

Figur e 8. Observed versus predicted human data values
(all concentrations or quantities) for the Monte Carlo
iteration of highest posterior probability.

The population SDs measure between-subject
variability. They are also affected by uncer-
tainty (i.e., the population SD cannoi be
exacdy computed from a finite sample).

The posterior means for several parame-
ters are quite far from their prior estimates.
The location of the blood over air partition
coefficient, PB, is shiftcd from 13.7 (±20%)
to 18 (±10%). The location of other partition
coefricients (slowly perfused muscie over
blood and richly perfused liver over blood) is
also changed. The largest shifts are observed
for metabolic parameters. The estimate of the
scaling coefficient of TCE Vmax i" l1'̂ 1"
(VMAXC)  is 4.22 (±20%) instead of43.8. A
large uncerrainry exisred on that prior esti-
mate, but 4.22 is still outside its prior 95%
confidence inrerval (lower bound at 12.6).
Therefore, there appears to be a conflict
between the data studied here and the data
studied previously. Note also that the poste-
rior mean of the fracrion TCE converted to
TCOH (POH) is quite lower than a priori
estimared. The posterior means of the scaling
coefficient of Vmax ^ot TCOH metabolism
(VMTCOC) and of the scaling coefficient of
the rate constant from TCOH to TCA
(KOCHC) are much increased but not
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Figur e 9. Predicted [solid lines) and observed (points)
time eourse of TCE concentration in venous blood of
human volunteers exposed by inhalation to various con-
centrations of TCE. The error bars presented on a data
point correspond to ±2 estimated measurement SD (the
size of the error is the same for all points).

Figur e 10. Predicted (solid lines) and observed (points)
time eourse of TCOH concentration in venous blood of
human volunteers exposed by inhalation to various con-
centrations of TCE. These volunteers were followed for
up to 22 hr. The error bars presented on a data point cor-
respond to ±2 estimated measurement SD (the size of
the error is the same for all points).

Tlme(hr )

Figur e 11. Predicted (solid lines) and observed (points)
time eourse of TCA concentration in venous blood of
human volunteers exposed by inhalation to various con-
centrations of TCE. The error bars presented on a data
point correspond to ±2 estimated measurement SD (the
size of the error is the same for all points).

0.1 0.15 os aas 03 n.»6 0.4

VFC Prudicte d

Figur e 12. Observed versus predicted fraction of body
weight äs fat in human volunteers exposed by inhalation
to various concentrations of TCE. The error bars span the
95% confidence intervals of the predictions.

incompatible with the vague priors used. In
terms of uncenainty, SDs about the posterior
means are quite low, approximately 1.1 or 1.2
(corresponding to a 10-20% CV). The para-
meter values are overall quite well idenrified
by the daia.

Estimates of population variability are
given by the posteriors ofthe population SDs,
E. Volumes and flows appear to vary across
subject by approximately 20% (CV). The
variability is somewhat higher for partition
coefficients (berween 30 and 40% CVs). It is
much higher for the metabolic parameters
(SDs representing approximately a factor of 2
difference). For example, die lowest rate con-
stant scaling coefiicient for TCA metabolism
(KTMETC) is 0.12 S 1.6 hr-1 (subject HOF)
and the highest is 1.1 2 1.25 hr"' (subject
101F, the subject with lowest TCA levels on
Figure 11). For the scaling coefficient ofthe
rate constant ofTCA loss to urine (KRTCC),
the values ränge from 0.13 $ 1.2 hr'"1 (subject
106M) to 3.4 S 1.2 hr-1 (subject 111F)

111F

o 0.5 i u a

KTMETC (1(hr)

Figure  13. Individual estirnates of the rate constant
scaling coefficient for TCA metabolism (KTMETC) and of
the rate constant of TCA loss to urine (KRTCC). The enw
bars span the 95% confidence intervals of the esti-
mates. Large individual differences are observed, with
some degree of correlation.

(Figure 13). Subject 111F excreted the highest
amount of TCA in urine (data not shown).
Note that the estimaies of variability given are
themselves affected by uncertainty (up to
50% CV for the variability estimaies of the
metabolic parameters). For example, the 95%
posterior confidence imerval of S for KRTCC
is [1.77, 2.85].

Examination of the subjects' paramerer
values points to peculiar pharmacoldneric
behaviors for some ofthem:
• Subject 106M has the highest fraction tat

(VFC), particularly for a male (some
female subjects approach bis VF, but no
males of the group studied approach it).
He is also an "outlier" with a TCE fat
over blood partition coefficient 3 times
that of the others. His maximal rate scal-
ing coefficient for TCE metabolism
(VMAXC)  and his rate constant of TCA
loss to urine (KRTCC) are the lowest.
Note that this subject shows the lowest
amount of TCA excreted (data not

Figur e 14. Individual estimates of the rate constant scal-
ing coefficient for TCOH to TCA, grouped by sex. The error
bars span the 95% confidence intervals of the estimates.

shown), and his TCOH blood concentra-
tions are not well modeled.

• Subject 201 M is also outstanding for his
highest alveolar Ventilation rate scaling co-
efficient (OPC), highest fractional blood
flow to the kidney (QKC), and high
TCOH body over blood partition coeffi-
cient (POHB), particularly for a male
(females tend to have higher POHBs, see
below). This subject has the second lowest
TCA excretion in urine and one ofthe low-
est TCOG elimination. It seems that this
subject can be characterized äs "fast" in
intake and elimination, at least from a phys-
iological (ifnot enzymadc) point ofview.

• Subject 103M has a Michaelis-Menten
constant (KM) about 3 times äs high äs
everyone eise. He has one of the highest
excretions ofTCA in urine.
Splitting the subjects by sex reveals some

differences berween males and females. The
visual examination of the marginal dismbu-
tions of a given parameter for each subject
reveals little pattern. For example, in Figure
14, it appears that female subjects exhibit
higher values of KOCHC, the rate constant
scaling coefficient for TCOH to TCA.
However, a large part of the variability



observed is due to uncenainty about the
populacion mean. When the effecc of the
Overall mean is removed, the difference is
highiy significant: P(KOCHCfi^l, >
KOCHC^) = 0.9998 (i.e., die female aver-
age was superior to the male average 99.98%
of the times in the sample of 15,000 parame-
ter veccors obtained by MCMC sampling).
Other significant sex differences were found:
• The scaling coefficient of the alveolar

Ventilation rate is higher for males
P(QPCn,aic > QPCfi^k) = 0.9997. This
implies that the data are sufficiently infor-
mative to show such a difference and also
that the surface area correcrion is not suffi-
cient to explain sex difFerences in alveolar
Ventilation. The level of physical training
might be another covariate to consider for
alveolar Ventilation in human studies.

• The posterior estimates of the VFC are
higher on average for females than for
males: P(VFCf^> VFC^ > 0.9999.
That was expected and is influenced by
the covariate measurements of adiposity
and by the toxicokineric data.

• Female subjects also seem to have higher
TCOH body over blood partition coeffi-
cients: P{POHB^i, > POHB^) >
0.9999; rhey also have a higher V^mx wa

K^, ratio (i.e., rate constant at low concen-
trarion) for TCOH glucuronidarion:
P(KMTCOH^ > KMTCOH^ >
0.9999, and a higher rate constant scaling
coefficient for TCA urinary excrerion:
P(KRTCCf^> KRTCC^ > 0.9943.

• Males were found to have higher TCA
body over blood partition coefficients:
P(PTCB^> PTCB^ = 0.992.
All  other male versus female parameter

averages do differ slighdy, but the P values are
less than 0.95, most ofthem being around 0.5.

Discussio n
The mice data show a rather large inter-
individual or interlot variability. There is lit-
de to do about that, unless the experimental
design were to allow the observation of indi-
vidual animals. The data still permit an
extensive calibration o f the model. The
human data have the advantage of being
available for each individual. There appear to
be, a posteriori, a few oudying points (for
example, Figure 10), which could be checked
and eventually removed. These few apparent
outliers have littl e weight and should not
affect sensibly the results presented here.
There could be a problem with the measure-
menc of fat content; this will  be discussed
below, in light ofthe model fit .

The mouse model is quite complicated,
and yet some aspecrs ofthe data are not so well
described by k (CH and DCA concentrarions,
and TCOG excreted). This is somewhat disap-
pointing, given the complexity of the model,

and one wonders what will  have ro be done ro
fit  such an extensive data set. It is possible that
some metabolic reactions do not obey simple
Michaelis-Menten reactions or that prior opin-
ions about the model parameters were for
some of them overly confidcnt. Note also that
even in large modeis, model uncenainty can be
large. The model, for example, does not
include heparic recycling or all possibilides of
extrahepatic metabolism. Yet, overall, the
model fits well a large part of the data, in par-
ticular TCE and TCA distribuuon. It would
be interesting to see die performance of other
modeis [e.g., those presented in {12,23)} wirh
this data set, which would allow a formal com-
parison of the competing modeis on the basis
of a common measure of goodness of fit , such
äs likelihood ratios.

The posterior parameter distributions
obtained for mice are quite narrow (with CVs
of about 10 or 20%), indicadng that the data
are strongly informative for most parts of the
model. Indeed, äs indicated above, some para-
meters or processes might need to be added for
a betler fi t and the model is somewhat mini-
mal with respect to the data. However, it
should be kept in mind that the fi t is not excel-
lent, and that may overconstrain the posterior
distributions. Part of the high covariance
between parameters may also be due to over-
constraining. It is possible ro model staristically
the lack of fit by including an autocorrelation
between data points (24). This has not been
attempted here and could be a usefui improve-
ment. Note that the posterior uncenainty for
the metabolic parameters would have been fur-
ther underesrimated if all physiological para-
meters had been set to predefined values.

The human model, even though complex,
also has difficulties in fitring all the data. This
is true in parricular for TCOH concentrarions
over a long period oftime, and some improve-
ment of the model in that respect may be
needed. Similarly, the adiposity ofthe subjects
(a measured covariate) does not fi t well with
the estimated fracrion ofbody weight äs fat. Ir
is possible that the pharmacokineric compan-
ment "fat" is not well estimated by external
adiposity measurements, in parricular for
extreme values. It also appears that the model
may not be able to describe correcdy oudying
subjects like subject 106M. This could be due
to the PBPK model, which lacks some compo-
nent important for such a subject. The misfit
for that subject could also be due to a lack of
flexibility  of the starisrical model adopted here
(log-normal distributions of the parameters in
the popularion). A possibilky for checking
would be to fi t the data of only that subject to
determine if a good fi t could be obtained.

The human posterior parameter distri-
butions agree in general quite well with
the corresponding priors, with reduced
uncertainty (since information from the data

has been gained). SDs about the posterior
means are quite low and correspond to a
10-20% CV: The parameter values are overall
quite well idenrified by the data. There is,
however, a conßict for the values ofVMAXC
between the values previously found (3) and
the ones obtained here. This is an imponant
parameter and a good characterizarion is
important. The difference could be due to
conflicts between the data analyzed here and
the previous data. For example, extensive
TCOH data are available here. It is also possi-
ble that the conflict is due to differences in
human model structures. A solurion to this
dilemma would be to take the model of
Clewell et al. (12) and fi t it ro the data of
Fisher (2) to obtain an esrimate of VMAXC
with the same data set. In any case, it is not
obvious that the differences in parameter val-
ues would result in notable differences when
predicting toxicologically relevant end points,
such äs internal TCA concentrarions. This
remains to be checked.

Vblumes and flows appear ro vary across
subject by 20% (CV), approximately. The
variability is somewhat higher for parririon
coefficients (between 30 and 40% CVs) and
much higher for the metabolic parameters
(SDs represenring about a facror of 2 differ-
ence). This is similar ro what was found for a
small group of human volunteers exposed to
tetrachloroethylene (5). Differences appear to
exist between sexes in the toxicokinerics of
TCE. There are differences between males and
females in alveolar Ventilation and adiposity for
the popularion sample scudied. This should be
true for compounds other than TCE and
shows that the model scaling could be
improved. More important for TCE Idnerics
are the findings that females have higher
TCOH body over blood panirion coefficients,
lower TCA body over blood partition coeffi-
cients, higher T^n over K^ ratios for TCOH
glucuronidarion, higher rate constant scaling
coefficients for TCOH ro TCA, and higher
rate constant scaling coefficients for TCA uri-
nary excrerion. Note that the staristically
highiy significant differences found for these
parameters should be interpreted with some
caurion. They are condirional on the model
strucmre being correct. At least, at this point,
it can be said that there are most certainly dif-
ferences in the kinetic behavior ofTCE
berween the males and females of the sample
studied. It would have been hard to reach that
conclusion without the starisrical adjustment
of a model, given the multiple exposure levels,
differences in body weight, nonlinear kinetics,
etc. Still, these differences may not be signifi-
cant in terms ofTCE toxicity (i.e., biologically
significant), It would be interesting to assess by
simularions whether internal metabolke con-
centrarions are much different for males and
females for ehe same TCE exposure.
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