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ABSTRACT 

Plasmodium falciparum has a complex transmission cycle. Public health planning and research 

would benefit from the ability of a calibrated model to predict the epidemiological characteristics of 

populations living in areas of malaria endemicity. This paper describes the application of Bayesian 

calibration to a malaria transmission model using longitudinal data gathered from 176 subjects in Ndiop, 

Senegal, from July 1 1993 to August 1 1994. The model is able to adequately predict P. falciparum 

parasitaemia prevalence in the study population. Further insight is provided into the dynamics of malaria 

in Ndiop: During the dry season, the estimated fraction of nonimmune subjects goes down to 20 percent 

and then increases up to 80 percent. The model-predicted time-weighted average incidences contributed 

by nonimmune and immune individuals are respectively 0.52 and 0.47 cases/day. The median times it 

takes to acquire an infection (conversion delay), for nonimmune and immune individuals, are estimated 

at 39 days and 285 days, respectively. 

KEYWORDS: MALARIA, MATHEMATICAL MODEL, BAYESIAN, PLASMODIUM 

FALCIPARUM, AFRICA. 
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Malaria-induced mortality and morbidity are increasing worldwide (1). New orientations for 

control of the disease are emphasizing reduction in mortality and morbidity rather than eradication (2, 3) 

. Particular attention is given nowadays to development of vaccines. For scientists seeking to isolate 

potential vaccines, for clinicians evaluating vaccine safety and efficacy, and for public health managers 

developing malaria control programs, it is important to know the epidemiological characteristics of the 

disease and of the populations living in areas of endemicity. For example, in clinical trials organized to 

test the efficacy of potential vaccines, ways to minimize the proportion of non-susceptible, eventually 

immune, recruited subjects would improve statistical power.  

However, malaria is a complex disease. P. falciparum infection confers only labile and partial 

immunity: acquisition of such an immunity only reduces the incidence of clinical malaria attacks without 

preventing infection (4-7), an infected subject may acquire a new infection before recovering from a 

previous one (a phenomenon known as "superinfection") (8), immunity is slowly acquired and function 

of exposure to infecting mosquitoes (9). To further complicate the problem, exposure to infectious 

mosquito bites is difficult to measure (10). Practically, exposure cannot be assessed for each subject, and 

all individuals are usually considered identically exposed; this constitutes a potential confounding factor 

for acquisition of immunity. The presence of parasites in individuals gives little information on exposure 

because parasitaemia can last a long time in the absence of treatment (11). Finally, in some geographic 

areas, exposure shows marked seasonality and can be very different from one year to the next (4). 

An epidemiological model, accounting for these complexities, would be a useful tool to describe 

the dynamics of malaria and assess the epidemiological status of exposed populations (12), answering 

both the needs of public health planning and malaria research. Among the relevant models reported in the 

literature (8, 12-25), few have been statistically calibrated (i.e., formally confronted to data) because of a 

lack of extensive longitudinal data and adequate statistical techniques. In only two cases (16, 21), 3 or 4 

of the model parameters were estimated through minimization of  or G  (akin to entropy) criteria of fit. 

Simulation results from these models have never been presented with confidence intervals allowing an 

assessment of their reliability. Newly developed Bayesian numerical techniques (e.g., Markov chain 

Monte Carlo, MCMC, methods) (26-28) offer the possibility of an extensive statistical treatment of 
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complex epidemiological models, including inference about model parameter values, confidence 

intervals on model predictions, model checking and hypothesis testing. We apply these techniques to the 

malaria model described by Struchiner et al. (23). This model embodies a series of coherent, plausible, 

research hypotheses about P. falciparum malaria natural history and offer a synthesis of previous works 

by MacDonald (8), Dietz et al. (16), and Nedelman (21). We use MCMC simulations to fit the model to 

longitudinal data gathered from the village of Ndiop, in a meso-endemic area of Senegal. Model 

simulations of the underlying infection dynamics are presented. 

MATERIALS AND METHODS 

Population and data 

The data used were gathered in the village of Ndiop (13°41'N, 16°23W) in the Sahelo-Soudanian 

region of Senegal. Since 1993, a longitudinal study has been conducted in Ndiop, in which data about 

entomological, parasitological and clinical data were collected. This analysis used data gathered from 

July 1 1993 to July 31 1994. The cohort follow-up was particularly intense from July to October 1993, 

when the prevalence of P. falciparum parasitaemia was highest. The rainy season usually lasts from June 

to October. 

Human data. Only the 176 villagers (over a total of 396) who were continuously present in the 

village during the study period were included. Exclusions can be considered random with respect to 

exposure (in particular, it is very unlikely that people left the village because of mosquito bites, or to get 

treatment elsewhere) and no bias should be introduced by the removal of the traveling villagers. On the 

other hand, traveling villagers had unmeasured exposure to mosquitoes during their outings, and could 

have introduced bias if included. A local medical care unit was created to support the study after reaching 

an agreement with the population of the village and the public health authorities. Informed consent was 

obtained individually from the participants, or from their parents (for children); approval was obtained 

from the Ministère du Plan et de la Coopération and from the Ministère de la Santé Publique. The unit 

was provided with basic equipment for malaria diagnosis. A team of four physicians, two technicians and 
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four field workers, stationed in the village, was in charge of the contacts with the community and clinical 

follow-up. They were all trained in the clinical and laboratory diagnosis of malarial infection. Active 

surveillance consisted of: (i.) daily visit to each villager at home, to record body temperature and clinical 

symptoms of any nature having occurred during the previous 24 hours; (ii.) collection of thick blood 

smears (TB) once a week from July to October 1993, and once a month from November 1993 to August 

1994. Passive surveillance included collection of TBs from subjects reporting to the health unit for any 

occasion. Special attention was paid to the use of anti-malarial drugs in the community and the 

population was asked not to use any such drugs without prescription. The only anti-malarial drug used 

was quinine (Quinimax; Sanofi-Labaz, Paris, France) administered at a dose of 25 mg/kg/day for 7 days 

in the following cases: children under 10 years old with fever (temperature higher than 38°C) and high 

parasitaemia (over 30 trophozoites per 100 leukocytes), pregnant women with clinical symptoms 

suggestive of malaria, persons with fever and very high parasitaemia (over 200 trophozoites per 100 

leukocytes) and persons with severe malaria symptoms (coma, etc.)  

A total of 5736 TBs were collected from the 176 villagers studied. To study the natural evolution 

of parasitaemia without interference with antimalarial treatments, TBs collected within 15 days after 

beginning treatment were excluded from the analysis. As a result, only 5000 TBs were considered in our 

analysis. All smears were double-read, once in the field by the technicians, and by an expert microscopist 

at the ORSTOM's laboratory in Dakar, whose reading was definitive. Slides were stained using 4 percent 

Giemsa's stain and up to 200 microscopic oil-immersion fields were examined at magnification 100. 

Parasite asexual stage (trophozoites) densities were reported as parasite count for 100 leukocytes 

(detection limit: 0.01 trophozoites for 100 leukocytes). The number, D(t), of trophozoite-positive TBs on 

any given day for which subjects were seen, given the total number of TBs examined, M(t), constituted 

an single data point. The whole data set will be noted D in the following. The observed prevalence 

presented on figure 2 were obtained by dividing D(t) by M(t) at each time t. Table 1 gives the distribution 

of subjects, positive TBs, and total TBs examined, by age and sex. 

Mosquito data. The main anopheline species in Ndiop are Anopheles arabiensis and An. gambiae. 

They both contribute to the high endemicity of Plasmodium falciparum malaria (29). Captures at night of 
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mosquitoes attracted to human volunteers were used for sampling mosquito populations. Adult 

mosquitoes were captured on 12 humans for 3 consecutive nights each month from July to November 

1993, and then weekly on 4 humans. Hourly human-bait collections were made on adult volunteers from 

19:00 to 7:00. The volunteers were always placed at the same locations in the village, half of them 

indoors and the other half outdoors. Infectivity of captured mosquitoes for P. falciparum was assessed by 

detection of circumsporozoite antigen protein (CSP) with enzyme-linked immunosorbent assays 

(ELISAs) (30, 31). The number of infected mosquito bites per person (entomological inoculation rate, 

EIR, he(t)) was hence obtained for each collection day. 

Dynamic model 

The deterministic compartmental model developed by Struchiner et al. (23) was used to describe 

the natural history of the infection in humans. A brief summary is given here, since the model has been 

described elsewhere in full details (23, 32, 33). The model equations and the definition of each parameter 

are given in Appendix. 

The human population is divided into four epidemiological classes or compartments (figure 1): 

nonimmune and immune negative subjects, in proportions X1(t) and X3(t), respectively; nonimmune and 

immune positive subjects, in proportions Y2(t) and Y3(t), respectively. Those proportions are time-

varying and the model can predict their full time-course. Nonimmune positive subjects infectious to 

mosquitoes, in proportion Y1(t), are the subset of the nonimmune positives showing sexual stages 

(gametocytes) parasitaemia. It is assumed that immunity does not totally protect against infection, but 

reduces the probability of becoming infected. Individuals are deemed positive if they show trophozoite 

parasitaemia (as assessed by TB examination). For our study the birth and death rate, , was equal to 

zero.  

Nonimmune negative individuals receive effective inoculations, in a proportion b1 of the EIR, and 

become infected. They shows positive parasitaemia after an incubating period of N1 days. An infected 

person may either acquire immunity or return to the nonimmune negative state. The maximum limiting 

rate at which immunity can be acquired is 2. Immune positive individuals are not infectious to 
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mosquitoes and recover more quickly than nonimmune. Immune negative individuals receive 

inoculations, in a proportion b2 of the EIR resulting in infection. The model specifies that b2 < b1. 

Immune negative individuals can lose their immunity if they receive no "booster" inoculation within the 

time interval Immunity-boosting inoculations are a proportion f of the EIR. Such inoculations prolong 

an already acquired immunity but do not lead to an established brood of parasites.  

An effective inoculation by an infectious mosquito produces one brood of parasites within the 

human host. Different mosquito bites can each inject a brood into an individual, and those broods are 

cleared independently of each other. We did not model the mosquito part of the parasite cycle: the EIR 

defined in the Struchiner model was replaced by our measurements, linearly interpolated. 

Assuming all subjects, at t = 0, to be nonimmune and negative (X1(0) = 1) is not realistic for 

Ndiop. However, neither initial conditions nor the actual "initial time" are known a priori. Preliminary 

simulations showed that, when starting with realistic conditions, equilibrium is reached in about two and 

half years. In that period of time, the system has also practically lost memory of its initial state. 

Consequently, the initial time was chosen to be December 22 1990. To acknowledge uncertainty in their 

values, the initial proportions of individuals in the compartments and initial average numbers of broods 

in individuals were considered as parameters to estimate. To respect the constraint of the summation to 1 

of the initial proportions, the reparameterization given in appendix (eqs. 17-19) was used. No data on 

EIR were available from December 22 1990 to July 1 1993, before the beginning of parasitological 

monitoring. To supply realistic weekly values in input to the model during that period, we used the 

average of the values recorded in Ndiop from July 1993 to December 1996 for each week. 

The model differential equations are nonlinear and include delays. They were integrated 

numerically, using the "Lsodes" algorithm provided by the MCSim software, version 4.2 (34). For given 

parameter values, integration of the equations given in appendix gives the time courses of its variables 

(X1(t), X3(t), Y1(t), Y2(t), Y3(t), z1(t), z2(t), z3(t)) over any period of time starting December 22 1990. The 

sum, Y,
~

(t) , of Y2(t) and Y3(t) is a model-computed estimate of the instantaneous prevalence of P. 

falciparum parasitaemia in humans. 
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Statistical computations 

A Bayesian approach was used to calibrate the model using the counts of P. falciparum 

trophozoite-positive TBs in Ndiop (the data, D). Basically, each model parameter (see the list in table 2 

and in appendix), i, was considered as a random variable and assigned a independent prior distribution, 

p( i). Those distributions were updated together to yield a joint posterior distribution, p( |D), such that 

model-computed time courses of prevalence (using parameter values drawn from that joint posterior) 

would be compatible with the data. According to Bayes' rule, p( |D) is proportional to the product of the 

prior distributions by the data likelihood, p(D| ), under the model (35, 36).  

The prior distributions summarize our knowledge about parameter values before seeing the Ndiop 

data (table 2). A priori lognormal or truncated lognormal distributions were assigned to several 

parameters. Their geometric means were set on the basis of the literature (4, 9, 11, 12, 21, 23). Their 

standard deviations (SD) were set by us to large values corresponding to a factor 5 or 2 (the latter for 

time delays, for which we had a priori  better information), with eventual truncation when ranges were 

suggested by the literature. Uniform distributions over feasible or large regions were assigned in the 

absence of prior information, in particular for the initial state variables (X3(0), z1(0), z2(0) and z3(0)) or 

their deconstraining parameters (FY2(0) and FY3(0)). 

To define the data likelihood, the observed number, D(t), of trophozoite-positive TBs at time t was 

assumed to be binomially distributed with parameters Y,
~

(t) , the model-predicted prevalence (0<Y,
~

(t) 

<1), and M(t), the total number of TBs counted at t. The joint posterior is therefore of the form: 

 

      

p | D p ˜ Y (t) 1 ˜ Y (t)  (1) 

Unfortunately, because the dynamic model is nonlinear, there is no known analytical form for 

p( |D). It is impossible to  describe it and report inference about the parameters in a direct way. It 

remains possible to summarize that distribution by drawing random sets of parameters values using 

Metropolis sampling (26). This iterative procedure belongs to a class of MCMC techniques which has 

recently received much interest (for review see 27, 37-39). Briefly, algorithm was as follows: At the start 
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of a sampling "chain", all parameters were assigned values sampled from the priors. For any following 

iteration of the sampler, each component, i, of the parameter vector was eventually updated by drawing 

a "proposed" new value, i', out of a Gaussian "proposal" distribution centered on i. Values of the joint 

posterior density at i and i' were then computed using equation 1 (this required running the differential 

model to obtain all needed values for Y,
~

(t) ). Label the two obtained density values  and '. If the ratio 

'/  exceeded 1, the new value i' was accepted and replaced i; Otherwise, i' was accepted only with 

probability '/ . In case of rejection of i' the value i was kept. After updating (eventually) all model 

parameters sequentially (the updating order does not matter in the long run), their values were recorded, 

therefore completing one iteration of the chain. Iterations were performed until the chain had reached 

equilibrium, i.e., until all parameters had approximately converged in distribution to p( |D). The SD of 

the proposal Gaussian was adjusted periodically to yield an acceptance rate of 25% (40). The 

convergence of several Markov chains to p( |D) was assessed using Gelman and Rubin's R,^  diagnostic 

(41). The parameter sets recorded after equilibrium was reached, were used to form histograms or 

compute summary statistics of the posterior distributions for estimands of interest (e.g., marginal 

parameter distributions, combinations of parameters, or model predictions). Obtaining the posterior 

distribution of model predictions required running the malaria model once for each parameter set 

recorded. All the above computations were performed by the MCSim software, version 4.2 (34). 

RESULTS 

Model fit 

Convergence of three independent MCMC chains was reached after about 40,000 iterations (R,^  

diagnostic at 1.07 on average, ranging from 1 to 1.2). Fifteen thousand parameter sets were sampled, by 

keeping 1 out of every 6 iterations from an additional 30,000 of each chain (each iteration kept yielded a 

parameter set). All simulations and inferences presented in the following were made using this final 

sample from p( |D). 
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A good fit to the data was obtained, while maintaining scientifically plausible parameter values. 

Figure 2 shows the daily trophozoite parasitaemia prevalences (D(t)/M(t)) together with the 

corresponding model predictions, Y,
~

(t) , made with the parameter set having highest posterior density in 

the final sample. This model prediction is the "best" of all, but is also quite representative of the set. Ten 

others model-predicted time courses of prevalence are presented, obtained using parameter vectors 

randomly drawn from p( |D). The differing model trajectories for all these curves reflect uncertainty in 

model predictions. However, they all have similar behavior. The posterior 95% confidence interval on 

predictions is also displayed. The rise to the peak (from about 20 percent prevalence, up to 70 - 80 

percent) is somewhat jagged and mostly driven by the random biting rate of mosquitoes. The subsequent 

decrease is smoother and driven by the gradual recovery of the infected subjects in the dry season. 

Prevalence returns to about 20 percent at the end of the dry season. Running a standard smoothing curve 

through the data would be purely descriptive and would give no insight about the underlying dynamics. 

Our goal is not so much to "fit" the data than to extract, from them, information about the model 

parameters. 

Posterior parameter distributions 

The joint posterior distribution of all parameters can be viewed in several dimensions, but for 

simplicity only the marginal distribution of each parameter is described here. Table 3 summarizes these 

distributions on the basis of the final parameter sample. For all biological parameters, the posterior 

location is noticeably different from the corresponding prior mean. Posterior standard deviations are 

much lower than a priori specified (compare tables 2 and 3) because important information about those 

parameters has been extracted from the data.  

The median sojourn time (1/r1) of a parasite brood in nonimmune human hosts is about 200 days 

(CI95 18- 2000 days). Albeit lower, this is still compatible with the 850 days previously assumed (9, 21, 

23). For immune subjects this sojourn time is 19 days (with a 30 percent CV and CI95 11 - 30 days). 

Immunity appears to affect the life span of the parasite in human hosts. 
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The recovery rate from infectiousness to mosquitoes among nonimmune positive hosts ( 1) is high 

but poorly identified. It corresponds to a median half life of 6 days, with CI95 0.5 - 125 days. The 

window of infectivity is therefore quite small (as expected from the relative brevity of the prevalence 

peak during the year). 

As indicated by the median value of 2, about 210 days (1/0.0047) are at least necessary for a 

human host to acquire immunity to P falciparum. This estimation is quite precise (CV of about 10 

percent) and much lower than the a priori value. Simulations indicate that for an inhabitant of Ndiop, 

exposed to a seasonal meso-endemic transmission, the numbers of infectious and noninfectious parasite 

broods present at any time in nonimmune hosts (z1 and z2) average around 10 (data not shown). In such 

conditions (see eq. 13 of the appendix) the actual immunity acquisition delay (A1) is equal to 214 days on 

average, close to its minimum value. Immunity appears more quickly than a priori expected, but still 

takes at least half a year to be in effect. 

The interval of time, , until an immune host loses immunity in the absence of exposure to 

infectious mosquito bites is about 230 days (CI95 180 - 290 days). The incubation period, N1, lasts on 

average 22 days (CI95 15 - 28 days). 

Few infectious bites (f is about 3 percent) are able to boost immunity, and this boosting does not 

seem to be very important, a posteriori. The proportion of potentially infectious bites actually resulting 

in an infection is much higher in nonimmune hosts (b1 = 40 percent, CI95 26 percent - 91 percent) than in 

immune subjects (b2 = 2.5 percent, CI95 1.5 percent - 3.5 percent). Immunity, although progressively 

acquired, seems to efficiently protect from infection. 

The marginal posterior distributions of the sampled initial state variables or their 

reparameterizations (X3(0), FY2(0), FY3(0), z1(0), z2(0), and z3(0)) are very close to the corresponding 

priors. This shows the insensitivity of the model to those parameters: their values do not appreciably 

affect the results. 



  Dr. N. Cancré — 13 

Model predictions of the underlying dynamics 

After fitting, the model can be used to simulate various scenarios to better understand the dynamics 

of P. falciparum infection in our study population. Figure 3 shows predictions of time-course of malaria 

immunity status during the year of our study and the following wet season (July 1993 to December 

1994), together with the measured EIR. At the end of the dry season, the population composition is as 

follows: 63 percent (CI95 35 - 85) nonimmune negative (X1), 12 percent (CI95 10 - 15) nonimmune 

positive (Y2), 1 percent (CI95 0.7 - 2) immune positive (Y3), and 24 percent (CI95 5 - 50) immune 

negative (X3). These proportions vary from year to year as mosquito as biting fluctuates in timing and 

intensity. Nonetheless, some behaviors appear stable. The proportion of nonimmune negative falls very 

quickly, and practically to zero, as soon as mosquito biting increases. Infected subjects initially transfer 

to a nonimmune positive status, whose proportion reaches a peak at about the same time as the biting rate 

(with a short delay imposed by incubation). Nonimmune positive subjects then transfer mostly to the 

immune status. However, the fraction of immune positive individuals does not increase much and 

individuals quickly eliminate parasites to become immune negative. Near the end of the dry season 

immune negative individuals loose immunity and the fraction of nonimmune negative increases quickly. 

Overall, most subjects move through the four states as the year progresses. 

Other epidemiological data point to the dependence of immunity on continued exposure (9). For 

example, in a malaria control program consisting in insecticide spraying against mosquitoes and mass 

antimalarial treatment of the human population for two wet seasons, malaria prevalence during the 

subsequent wet season was higher than in a control population; the following year, in the absence of 

intervention, prevalence became similar for the two populations (9). This behavior, also discussed by 

Halloran et al. (32), is reproduced by the present model (data not shown). 

The incidence of malarial infection is difficult to measure, since it requires identification of new 

infections in potentially already parasitaemic individuals. The model can easily gives an estimate for 

various incidence rates. Figure 4 presents the model-reconstructed instantaneous incidence rates (number 

of new cases/day) of trophozoite parasitaemia contributed by nonimmune and immune individuals during 
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the 1993 wet season in Ndiop (incidence was null during the dry season). These rates correspond to the 

products (t) X  and (t) X , respectively (396 being the total size of the population of 

Ndiop). The time-weighted average incidences, over the year, contributed by nonimmune and immune 

individuals are about the same — respectively 0.52 (CI95 0.40 - 0.63) and 0.47 (CI95 0.30 - 0.67) 

cases/day. However, the incidence time profiles for these two sub-populations do differ. Early incident 

cases are contributed mostly by nonimmune individuals, and late cases by immune subjects. This is 

explained by the progressive decline of the nonimmune negative population as the wet season progresses 

(figure 3). For the whole population, the time-weighted average is estimated at 0.99 (CI95 0.87 - 1.2) 

cases/day. 

Figure 5 gives the immunity acquisition delay and the conversion delays for nonimmune and 

immune subjects as a function of the EIR. These delays are time-dependent when EIR varies (see eqs. 9 

and 10 in appendix). To avoid this time dependency, the model predictions presented here were 

computed with constant EIRs. Computations were made with the parameter set having highest posterior 

density. When biting is seasonal, as in Ndiop, the curves in figure 5 can still be used to compute 

approximate delays given yearly average EIRs. The immunity acquisition delay (1/A ) first decreases 

proportionally to inoculation rate. It starts flattening at 0.01 bites per person per day. After that point, it 

remains at a minimum value of about 210 days (equal to 1/ ). The conversion delays are the average 

time it takes a disease-free individual to acquire an infection. They are given by N1+1/ (t) and 

N1+1/ (t) for nonimmune and immune subjects, respectively. At low inoculation rates (at least below 

the Ndiop average of 0.1 potentially infectious bites/person/day), the conversion delay is about 16 times 

(ratio b /b ) lower for immune than for nonimmune subjects. These delays first decrease proportionally 

to inoculation rate and, as it increases, they tend toward a common minimum: the incubation period. For 

a nonimmune individual, the median estimate of the conversion delay, in 1993 in Ndiop, was 39 days 

(CI95 29 - 46). For an immune subject it was equal to 285 days (CI95 205 - 440). The 95% confidence 

bands for all delays presented in figure 5 span approximately a factor 2. 
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DISCUSSION 

This work demonstrates the possibility to statistically calibrate a complex mathematical model 

with epidemiological data, using a Bayesian framework. As a result, a reasonable fit of the parasitaemia 

prevalence data was reached, showing that the model is compatible with the observations, and a sample 

of model parameters values was obtained from their joint posterior distribution. The model was then used 

to predict quantities otherwise difficult to measure, given the current state of knowledge. We obtained, 

for example, estimates of instantaneous and average incidence rates of P. falciparum parasitaemia. 

Among the statistical methods available to us, Bayesian updating is particularly appropriate for 

integrating two forms of information (28, 42, 43): "prior knowledge" from the scientific literature, and 

"data" from field studies. Still, several issues can be discussed about the data used, the structure of the 

chosen model, and various assumptions we made. 

The data were obtained through an intensive follow-up. A potential bias in subject recruitment 

arises as individuals were offered the opportunity to present themselves to clinical examination. P. 

falciparum-infected individuals presenting symptoms may have been over-represented. However, blood 

samples were analyzed in all self-motivated visits, related or not to malaria, and only 16 percent of the 

samples analyzed where obtained during such visits. We also verified, through examination of residuals 

after model calibration, that the prevalence of P. falciparum parasitaemia in self-motivated consultations 

was not higher than in systematic screenings. The impact of a potential bias in self-motivated 

consultations should therefore be small or nonexistent. We only analyzed data on the prevalence of P. 

falciparum trophozoites parasitaemia, but it would also be interesting to extend the model to consider 

data on the number of clinical malaria attacks. 

The model developed by Struchiner et al. (23) offers a reasonable, even if simplified, description 

of malaria physiopathology. We did not include the original description by Struchiner et al. of the 

parasite cycle in mosquitoes. That was not needed since our data included EIR throughout the year. 

However, that rate was assumed to be precisely measured and identical for all subjects. This assumption 

was needed because the full treatment of "error in variables" problems is difficult in the context of large 
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and computationally intensive models. Another important set of modeling assumptions concerns 

immunity. In the model, an infected person does not necessarily acquire immunity after one inoculation 

and immunity can be lost with time. Although the hypothesis of a definitive acquisition of immunity to 

the different antigenic strains of parasite seen during an individual's lifetime (18) is not explicitly 

considered, the model does assume that the acquisition of immunity is a function of the number of co-

infecting strains. 

Our analysis was performed by pooling data on all subjects (but still preserving the longitudinal 

aspect of the data at the population level). This could be improved by taking into account the age 

structure of the population, for example through a hierarchical statistical model (44). This could shed 

light of on age-related differences in susceptibility to P. falciparum infection. At this occasion, it might 

be possible to take into account the fact that the feeding behavior of mosquitoes is affected by a number 

of host- or environment-related factors (45-48). 

According to the model, in conditions similar to those of Ndiop, the fraction of susceptible 

subjects is the highest at the very end of the dry season, when mosquitoes start biting again. This makes 

sense given what is known of the natural history of malaria. The advantage of using a calibrated model, 

assuming it is correct or sufficiently robust, is that it offers a quantitative estimate of this fraction and of 

the associated uncertainty. Use of such information in vaccination trial design can help assess and 

improve statistical power. Power calculations show that the effective size of a trial is proportional to the 

fraction of susceptible subjects (e.g., a study with 10000 person-days and 50 percent susceptible subjects 

in each group has the same power as a 5000 person-days, 100 percent susceptible, study). Location-

specific EIRs could be used in input to the model to assess the best time of the year for a study in other 

areas than Ndiop. 

A dynamic perspective on malaria, as embodied in an epidemiological model able to disentangle 

time-varying exposures, superinfections, and complex immunity acquisition processes, is essential for a 

proper analysis of malaria field study data. Too many pitfalls of confounding and bias, difficult to avoid, 

await standard data analyses. The model analyzed here is by no means complete or perfect, but it offers a 

reasonable basis for extension and improvement. Several research teams, worldwide, are currently trying 
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to improve malaria models. These efforts would benefit from the statistical techniques presented here. 

Calibrated models can be powerful predictive tools for experimental design and exploration of public 

health measures. 
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APPENDIX 

The following equations, from Struchiner et al. (23), describe the transitions among model 

compartments: 

 
    

dX (t)

dt
(t) R(t)Y(t) ( (t) (t))X (t) (t) (1) 

 
    

dX (t)

dt
R (t)Y(t) ( (t) (t))X (t) (t) (2) 

 
    

dY(t)

dt
(t)X (t) A(t) R(t) (t)Y(t) (3) 

 
    

dY(t)

dt
(t)X (t) A(t)Y(t) R (t) (t)Y(t) (4) 

 
    

dz(t)

dt
(t) (t)z(t) (5) 

 
    

dz(t)

dt
(t)z(t) r z(t) (6) 

 
    

dz(t)

dt
(t) rz(t) (7) 

 
    
Y

1 e

1 e
Y  (8) 

 
    
(t) b h(t N ) (9) 

 
    
(t) b h(t N ) (10) 

 
    
R r z

e

1 e
 (11) 
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R r z

e

1 e
 (12) 

 
    
A (1 e ) (13) 

 
    
(t) R(t ) Y(t ) (f b ) h(t N ) X (t )e  (14) 

with : 

 

    

h 
h (u)

du  (15) 

 
    
h(t) b h(t N ), b f 1 (16) 

 
    
Y(0) F (1 X(0)) (17) 

 
    
Y(0) F (1 X(0) Y(0)) (18) 

 
    
X(0) 1 X(0) Y(0) Y(0) (19) 

The symbols (in alphabetical order) used in the above equations and in the text correspond to: 

A1: rate at which immunity to P. falciparum infection is acquired by a human host. 

b1: proportion of bites by infectious mosquitoes on negative nonimmune hosts actually resulting in infection. 

b2: proportion of bites by infectious mosquitoes on negative immune hosts actually resulting in infection. 

f: boosting factor (i.e., proportion of bites by infectious mosquitoes on immune hosts resulting in boosted 

immunity). 

FY2(0): deconstraining parameter for Y2(0). 

FY3(0): deconstraining parameter for Y3(0). 

he(.): entomological inoculation rate (EIR): number of P. falciparum infectious bites per human per day. 

N1: P. falciparum parasitaemia incubation period in humans (in days). 

r1: rate constant of elimination of a brood of parasites by nonimmune positive hosts (in days-1). 
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r2: rate constant of elimination of a brood of parasites by immune positive hosts (in days-1). 

R1: recovery rate for nonimmune positive individuals (in days-1). 

R2: recovery rate for immune positive individuals (in days-1). 

X1: proportion of nonimmune negative (i.e., naive) individuals in the population. 

X1(0): initial value (at time zero, i.e. December 22 1990) of X1. 

X3: proportion of immune negative individuals. 

X3(0): initial value of X3. 

Y1: proportion of nonimmune positive individuals potentially infectious for mosquitoes. 

Y2: proportion of nonimmune positive individuals. 

Y2(0): initial value of Y2. 

Y3: proportion of immune positive individuals. 

Y3(0): initial value of Y3. 

z1: average number of infectious broods of parasite per nonimmune positive human host. 

z1(0): initial value of z1. 

z2: average number of noninfectious broods of parasite per nonimmune positive human host. 

z2(0): initial value of z2. 

z3: average number of noninfectious broods of parasite per immune positive human host. 

z3(0): initial value of z3. 

1: recovery rate from infectiousness to mosquitoes among nonimmune positive hosts (in days-1). 

2: maximum rate at which immunity to P. falciparum infection can be acquired by a human host (in 

days-1). 

: death and birth rate in the human population (in days-1). 

: daily fraction of immune negative subjects loosing immunity. 

: infection rate for nonimmune negative subjects (probability per day for such a subject to be infected). 

: infection rate for immune negative subjects (probability per day for such a subject to be infected). 

: time delay needed for an immune host to loose immunity in the absence of exposure to infection (in 

days). 
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TABLE 1. Counts* of individuals and thick blood smear by sex and age in the cohort studied. 

Sex Age (years) 

 < 1 1-4 5-9 10-14 15-19 20-30 > 30 

Female 5 

(67/160) 

9 

(69/222) 

15 

(207/454) 

14 

(190/396) 

8 

(147/241) 

15 

(171/405) 

21 

(214/594) 

Male 6 

(52/192) 

23 

(265/719) 

16 

(220/485) 

8 

(106/178) 

6 

(106/149) 

5 

(65/168) 

25 

(265/637) 

* Count of subjects in class (trophozoite-positive smears / total smears examined). 
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TABLE 2. Prior distributions adopted for the model parameters. 

Parameter Source Distribution Mean Standard Deviation Min Max 

r1 (9, 21) Lognormal 0.00118 
* 5 † — — 

r2 (9, 21) Lognormal 0.0134 
* 5 † — — 

1 (9, 21) Lognormal 0.0108 
* 5 † — — 

2 (9, 21) Lognormal 0.00026 
* 5 † — — 

  (9, 11, 12) Truncated lognormal 365 
* 2 † 90 1095 

N1 (4, 9) Truncated lognormal 15 
* 2 † 5 50 

f — 
‡ Uniform 0.5 0.289 0 1 

b1 — 
‡ Uniform (1+b2)/2 (1-b2)/v12 b2 1 

b2 — 
‡ Uniform f/2 f/v12 0 f 

X3(0) — 
‡ Uniform 0.5 0.289 0 1 

FY3(0) — 
‡ Uniform 0.5 0.289 0 1 

FY2(0) — 
‡ Uniform 0.5 0.289 0 1 

z1(0) — 
‡ Uniform 50 28.9 0 100 

z2(0) — 
‡ Uniform 50 28.9 0  

z3(0) — 
‡ Uniform 50 28.9 0 100 

* Geometric mean. 

† Geometric standard deviation (exponential of the SD in log space). 

‡ Given the lack of prior information, uninformative uniform prior was used. 



  Dr. N. Cancré — 27 

TABLE 3. Summary of the posterior (fitted) distributions for the model parameters.  

Parameter Median Mean (SD) Geometric 

mean (GSD*) 

2.5th %tile 25th %tile 75th %tile 97.5th %tile 

r1 0.0049 0.030 (0.18) 0.0047 (3.3) 0.0005 0.0026 0.0082 0.057 

r2 0.053 0.055 (0.015) 0.054 (1.3) 0.033 0.045 0.063 0.095 

1 0.12 0.33 (0.51) 0.12 (4.9) 0.0055 0.04 0.39 2.0 

2 0.0047 0.0047 (4.6 10-4) 0.0047 (1.1) 0.0037 0.0044 0.0051 0.0055 

  230 235 (30) 230 (1.1) 180 220 260 290 

N1 22 22.5 (2.9) 22 (1.2) 15 21 24 27.5 

f 0.030 0.038 (0.051) 0.032 (1.5) 0.019 0.026 0.035 0.076 

b1 0.39 0.43 (0.16) 0.41 (1.4) 0.26 0.33 0.48 0.91 

b2 0.024 0.024 (0.005) 0.023 (1.2) 0.015 0.021 0.027 0.035 

X3(0) 0.66 0.62 (0.26) 0.525 (2.0) 0.080 0.42 0.84 0.98 

FY3(0) 0.37 0.42 (0.28) 0.30 (2.7) 0.025 0.18 0.66 0.96 

FY2(0) 0.42 0.45 (0.27) 0.33 (2.6) 0.030 0.22 0.66 0.95 

z1(0) 51 50.5 (28) 39 (2.5) 3.7 27 74 96 

z2(0) 48 49 (28) 37 (2.5) 3.3 25 72 96 

z3(0) 52 51 (28) 38 (2.6) 2.7 27 75 97 

* GSD: Geometric standard deviation 
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FIGURE CAPTIONS 

Figure 1: Epidemiological model of P. falciparum malaria in humans (23). Compartments represent the 

four epidemiological classes considered in the human population. Arrows indicate transitions among 

compartments. Symbols are given in Appendix. 

Figure 2: Time-course of P. falciparum daily prevalence (number of thick blood smears with positive 

trophozoites divided by the total number of smears) in 176 individuals living in Ndiop from the July 1 

1993 to July 31 1994. The points correspond to observations. The thick line is the model-predicted 

prevalence in the population, as a function of time. It was obtained by running the model with the vector 

of parameter values having highest posterior density (among our random sample of 15000 posterior 

vectors). The thin lines are also model predictions of prevalence, generated with 10 other random 

parameter vectors drawn from their posterior distribution (see text). The outermost two lines correspond 

to the CI95 on predicted prevalence. 

Figure 3: Model predictions of the fractions of the Ndiop human population in four epidemiological 

states for years 1993-1994 (thick lines: predictions obtained by running the model with the vector of 

parameter values having highest posterior density; thin lines: predictions generated with 10 random 

posterior parameter vectors; the outermost two lines correspond to the CI95 on predictions). The dotted 

lines correspond to the entomological inoculation rate (EIR) for the same period of time. 

Figure 4: Model-reconstructed incidence rate of trophozoite parasitaemia in Ndiop population during the 

1993 wet season. Thick solid line: incidence rate contributed by non-immune subjects; thick dashed line: 

contributed by immune subjects; thin line: EIR. 

Figure 5: Model-predicted immunity acquisition and conversion delays as a function of the EIR. 

Computations were made with the parameter set having highest posterior density. 
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Figure 1: Epidemiological model of P. falciparum malaria in humans (23). Compartments represent the 

four epidemiological classes considered in the human population. Arrows indicate transitions among 

compartments. Symbols are given in Appendix. 
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Figure 2: Time-course of P. falciparum daily prevalence (number of thick blood smears with positive 

trophozoites divided by the total number of smears) in 176 individuals living in Ndiop from the July 1 

1993 to July 31 1994. The points correspond to observations. The thick line is the model-predicted 

prevalence in the population, as a function of time. It was obtained by running the model with the vector 

of parameter values having highest posterior density (among our random sample of 15000 posterior 

vectors). The thin lines are also model predictions of prevalence, generated with 10 other random 

parameter vectors drawn from their posterior distribution (see text). The outermost two lines correspond 

to the CI95 on predicted prevalence. 
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Figure 3: Model predictions of the fractions of the Ndiop human population in four epidemiological 

states for years 1993-1994 (thick lines: predictions obtained by running the model with the vector of 

parameter values having highest posterior density; thin lines: predictions generated with 10 random 

posterior parameter vectors; the outermost two lines correspond to the CI95 on predictions). The dotted 

lines correspond to the entomological inoculation rate (EIR) for the same period of time. 
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Figure 4: Model-reconstructed incidence rate of trophozoite parasitaemia in Ndiop population during the 

1993 wet season. Thick solid line: incidence rate contributed by non-immune subjects; thick dashed line: 

contributed by immune subjects; thin line: EIR. 
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Figure 5: Model-predicted immunity acquisition and conversion delays as a function of the EIR. 

Computations were made with the parameter set having highest posterior density. 


