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Abstract 

Many regulatory frameworks, e.g. related to the Transport of Dangerous Goods, the Registration, 

Evaluation, Authorisation and restriction of chemicals (REACH) or the Classification, Labelling and 

Packaging of substances and mixtures (CLP), require the characterization of the hazards of chemicals, 

which could be complex. In particular, the REACH regulation involves an extensive quantity of works, 

to gather toxicological, eco-toxicological and physico-chemical properties for a large number of 

compounds. So, the full characterization by experimental way is time-consuming and cost-expensive. 

Alternative methods are therefore encouraged to complement experimental tests. The Quantitative 

Structure-Property Relationships (QSPR) approach is one of the recommended methods, provided 

that they are developed within the rigorous guidelines proposed by the Organization for Economic 

Co-operation and Development (OECD). In this context, a series of nitroaromatic compounds has 

been analyzed to achieve new QSPR models for the prediction of their heat of decomposition 

respecting the requirements for application in regulatory frameworks.  

Three multilinear models were obtained upon the set of descriptors considered for their 

development (constitutional, topological or both) that do not need any preliminary time expensive 

quantum chemical calculations. They were tested by internal and external validation tests. Good 

performances for the two ones including constitutional descriptors were obtained in particular in 

terms of predictive power in a well defined applicability domain (R²IN=0.81-0.87). They are easier to 

apply than our previous quantum chemical based model, since they do not need any preliminary 

calculations. 

Keywords: Quantitative Structure-Property Relationships; heat of decomposition; nitroaromatic 

compounds; constitutional and topological descriptors 

Highlights: 

•  QSPR models were developed for the heat of decomposition of nitroaromatic compounds. 

•  Two accurate MLR models were exhibited based on simple constitutional (and topological) 

descriptors. 

•  Performances were evaluated by a series of internal and external validations. 

•  The new QSPR models satisfied all OCDE principles of validation for regulatory use.
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1 Introduction 

To characterize the intrinsic hazard of chemical compounds, the Recommendations on the Transport 

of Dangerous Goods (UN, 2011) listed a series of tests. Among the involved physico-chemical 

properties, heats of decomposition are considered as a pre-selection criterion to identify substances 

that could present explosive properties. Measured by calorimetric analyses, the heat of 

decomposition evaluates the amount of energy released during the decomposition of chemicals. 

Among available methods, differential scanning calorimetry (DSC) (Chervin & Bodman, 2003; Grewer, 

1994; Jones & Augsten, 1996; Yoshida, 1987) providing heats of decomposition with uncertainties of 

measurement of about 5–10% (Ando, Fujimoto, & Morisaki, 1991) is a typical example of an 

experimental screening test. 

Such tests are also considered in the new European REACH (EC 1907/2006) and CLP (EC 1272/2008) 

regulations. This new regulatory framework implies the systematic characterization of a tremendous 

number of substances, since more than 143 000 were submitted in the pre-registration phase of 

REACH between June and December 2008 (EChA, 2012). Unfortunately, such volume of work is 

incompatible with the imposed calendar, i.e. until 2018 for existing substances (depending on 

quantities of chemicals produced or imported). So, the use of methods, alternative to experimental 

testing, such as quantitative structure property relationships (QSPR), was explicitly recommended to 

obtain information data (physico-chemical, toxicological and eco-toxicological) required by REACH. 

Indeed, QSPR models represent powerful tools already successfully used for biological (Winkler, 

2002), toxicological (Cronin & Worth, 2008; Netzeva, Pavan, & Worth, 2008), pharmaceutical 

(Grover, Singh, Bakshi, & Singh, 2000a, b) and physico-chemical applications (Dearden & Worth, 

2007; Katritzky et al., 2010). Five principles have even been proposed by the Organization for 

Economic Co-operation and Development (OECD) for their validation in the context of regulatory 

uses (OECD, 2007). At first, the endpoints of models have to be fully defined, i.e. including the 

description of experimental protocols. Secondly, algorithm must be transparent, so that the model 

equations (or structures) and all the related computational parameters must be clearly defined. 

Then, domains of applicability must be defined so to determine on which systems accurate 

predictions are expected or not. Performances have to be evaluated on a series of validation tests, 

including the characterization of predictivity on an external set of compounds. Finally, the fifth 

principle recommends, when possible, a mechanistic interpretation of models to link their 

parameters to the subjacent mechanisms involved in the studied properties. These principles have 

already been taken into account for the development of various QSPR models in the last years for 

toxicological endpoints (Benigni, Bossa, Netzeva, & Worth, 2007; Gramatica, 2007) as for physico-

chemical properties (Fayet, Del Rio, Rotureau, Joubert, & Adamo, 2011; Fayet, Rotureau, Joubert, & 

Adamo, 2011; Öberg & Liu, 2011; Papa, Kovarich, & Gramatica, 2009; Prana, Fayet, Rotureau, & 

Adamo, in press). Moreover, the applicability of such models in an industrial context has been 

demonstrated (Patlewicz, Chen, & Bellin, 2011). 

Concerning the heat of decomposition of nitroaromatic compounds, only few QSPR studies have 

been carried out. First attempts used limited datasets that did not allow any external validation. 

Saraf proposed a correlation with the number of nitro groups (Saraf, Rogers, & Mannan, 2003) with a 

fitting error of 8% for a very limited number of compounds (19 nitrobenzene derivatives). In previous 

works, a series of preliminary multilinear models were derived from a data set of 22 molecules with 
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high correlations (up to R²=0.98) by introducing quantum chemical descriptors (Fayet, Joubert, 

Rotureau, & Adamo, 2009a; Fayet, Rotureau, Joubert, & Adamo, 2009, 2010). Unfortunately, the size 

of these datasets did not allow any external validation. In more recent works (Fayet, Del Rio, 

Rotureau, Joubert, & Adamo, 2011; Fayet, Rotureau, Joubert, & Adamo, 2011), we obtained very 

robust models, following the OECD principles, by analyzing a more extended data set of 77 

nitrobenzene derivatives. An accurate model for the whole diversity of structures included into this 

dataset was obtained through a qualitative decision tree with high predictivity (82% of correct 

predictions obtained on a validation set of 22 molecules) (Fayet, Del Rio, Rotureau, Joubert, & 

Adamo, 2011). Another reliable model (Fayet, Rotureau, Joubert, & Adamo, 2011), based on a 

quantitative multilinear regression with a predictivity in its applicability domain of R²IN=0.86, was 

issued from a data set restricted to the compounds presenting no substituent in ortho position to the 

nitro group considering the fact that the presence of such ortho substituent possibly involves 

particular decomposition mechanisms. However, these two models require a preliminary 

determination of quantum chemical properties which could be time-consuming and not necessarily 

straightforward.   

Starting from these “proofs of principles” on the possibility to develop robust QSPR models 

respecting OECD principles, new multilinear models were developed based on the same data set, in 

particular for non-ortho substituted nitroaromatics, by considering only simple constitutional and 

topological descriptors. Based on these descriptors, models will be easier to apply by industrials in 

the context of REACH for example, since they do not need any prior quantum chemical calculations.  

2 Materials and methods 

2.1 Experimental data set 

Heats of decomposition (-ΔH) of 42 nitroaromatic compounds have been used to derive high 

predictive models. Experimental data represent a critical point of the QSPR analysis, since they have 

to be obtained following a single protocol in order to satisfy the first principle of the OECD guidelines 

(OECD, 2007). Indeed, this ensures the compatibility between data and then it reduces uncertainties 

that could propagate in the model during the fitting procedure. For this reason, all experimental data 

were extracted from a single reference (Ando, Fujimoto, & Morisaki, 1991). The heats of 

decomposition were measured using a pressure differential scanning calorimetry (DSC) apparatus, on 

1–2 mg samples in aluminum cells with pin-hole, with a heat rate of 10 K/min.  

It has to be noticed that the studied compounds (presented in table 1) consisted in nitrobenzene 

derivatives substituted by a variety of groups (e.g. nitro, amino or halogens), with the particularity to 

present no substituent in ortho position to a nitro group. Indeed, ortho substituted compounds 

potentially undergo to specific decomposition mechanism involving the interaction of the nitro group 

with the adjacent substituent as evidenced on nitrotoluene derivatives (Fayet, Joubert, Rotureau, & 

Adamo, 2009b; Fayet, Rotureau, Joubert, & Adamo, 2011). 

To evaluate the predictivity of the developed models, this data set was divided into two parts. A 

training set of 31 molecules was used for the development of the model and a validation set of 11 

compounds was used to compute an external validation. The partition between sets defined in 

previous work (Fayet, Rotureau, Joubert, & Adamo, 2011) was kept as it ensured the same 
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distribution in property values in both training and validation sets (as shown in Figure 1). Moreover, 

no bias in the diversity of chemical structures was observed in each set. 

2.2 Molecular descriptors 

The molecular structures of the selected nitroaromatic compounds were characterized by a series of 

88 molecular descriptors that can be extracted from a simple 2D structure. Constitutional descriptors 

are the simplest descriptors that reflect the molecular composition. They count the number of 

specific atoms or bonds in molecules (e.g., number of O atoms and number of single bonds). 

Topological descriptors, like the Wiener index, are based on atomic connectivity tables and provide 

information about the size and shape of molecules. All these descriptors do not require quantum 

chemical computations and have been evaluated using the Codessa software (Codessa, 2002). More 

information is available in the books of Karelson (1996) and Todeschini (2000). In addition, external 

descriptors that do not need any expensive calculation times were added, like the occurrence and 

count of specific molecular groups identified in the molecules of the database (e.g. number of nitro 

groups). 

2.3 QSPR modeling 

In this paper, multilinear regressions were derived. Such models are based on the following formula: 

∑+=
i

ii
XaaY 0

      (Eq. 1) 

where Y is the calculated property, Xi are the molecular descriptors and ai the regression constants. 

To be accurate, models have to be constituted by an optimized set of descriptors. Indeed, a too large 

number of descriptors involve large errors in prediction due to the inclusion of parameters that are 

not really related to the property and to inter-correlated descriptors that represent redundant pieces 

of information. So, to achieve reliable QSPR models, a parameter selection, using the Best Multi 

Linear Regression technique, as implemented in Codessa software, was realized among the 88 

calculated descriptors. 

This stepwise approach , already successfully used in previous works (Fayet, Rotureau, Joubert, & 

Adamo, 2010, 2011), started with constructing two-parameter models based on non-intercorrelated 

descriptors (with R² between descriptors lower than 0.1) and then it built higher rank models by 

adding new non-intercorrelated descriptors (i.e. with R² lower than 0.6 with each of the previous 

ones). By this way, this method guarantees that two intercorrelated descriptors are not selected in 

the same model. Finally, the algorithm gave, at each rank (i.e. for each number of descriptors), the 

model presenting the higher correlation with the studied property. 

The final model was chosen among these regressions as the one representing the best compromise 

between the correlation refinement and the number of descriptors. The pertinence of each 

descriptor in the model was also checked based on a student t-test at a 95% level of confidence 

(presented in Supporting Information, Tables S1-S3). 

2.4 Internal and external validations 
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To investigate the performances of the developed models, a series of internal and external validation 

tests were performed (Tropsha, 2010; Witten & Frank, 2005). The goodness of fit was evaluated for 

the molecules of the training set by the coefficient of determination (R²) and the relative mean 

absolute error (MAETR(%)). 

Leave-one-out (LOO) and leave-many-out (LMO) cross validations were computed, to estimate the 

robustness of the model, i.e. the dependence of the fitting of the model to any molecule(s) of the 

training set, via the Q²LOO, Q²10CV and Q²5CV coefficients (for LOO, 10-fold and 5-fold cross validations, 

respectively). These coefficients were expected to be stable upon partition size and close to R².   

The models were also evaluated against chance correlation by Y-randomization (Rücker, Rücker, & 

Meringer, 2007). Property values were randomized within the training set by 500 successive 

iterations. From each new randomized data set, a new model was computed again, with 

performances expected to be low. Finally, the average value and the standard deviation in R² 

coefficients for the randomized models (denoted R²YS and SDYS, respectively) were calculated, to 

check that the original model was strongly more performant than the randomized ones. 

Then, the predictive powers of the models were estimated for the molecules of the validation set by 

the coefficient of determination (R²EXT), the relative mean absolute error (MAEEXT(%)) and the Q²EXT 

coefficient proposed by OECD guidelines (OECD, 2007). 

2.5 Applicability Domain 

The applicability domain (AD) of each model, i.e. the domain in which predictions can be considered 

as accurate, was defined by the molecules of the training set. It was built, for each descriptor, by the 

range of values represented among the molecules of the training set. The AD ranges for each 

descriptor in each model are available in Supporting Information (Table S4).  

So, for new predictions, future users will simply have to preliminary check if descriptor values are in 

the intervals defining the AD to know if the model is applicable for the molecules they want to 

consider. 

To evaluate the real predictive capability of the models in the context of future predictions, the 

predictive performances of all models were finally re-evaluated taking into account ADs (noticed R²IN, 

MAEIN (%) and Q²IN, respectively). 

3 Results  

3.1 Model based on constitutional descriptors 

A first model was developed based only on 50 constitutional descriptors. The BMLR procedure 

proposed equations including up to 16 descriptors and the best compromise between the correlation 

and the number of descriptors was obtained for a four-parameter model: 

-ΔH = -594.5 + 2381.6 ndb,rel + 306.5 nNO2 - 791.4 nO,rel + 83.4 nconj (Eq. 2) 

where ndb,rel and nO,rel are the relative numbers of double bonds and oxygen atoms, respectively, and 

nNO2 and nconj are the numbers of nitro groups and conjugated bonds, respectively. It has to be 

noticed that nitro groups contain two conjugated bonds. 
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In this equation, all descriptors presented the same importance in the regression with close absolute 

values of t-test (from 2.2 to 5, in table S1). The presence of nNO2 should be particularly noticed. 

Indeed, already included in previous models addressing the prediction of the same property (Fayet, 

Del Rio, Rotureau, Joubert, & Adamo, 2011; Fayet, Rotureau, Joubert, & Adamo, 2011), this 

descriptor is pertinent from a chemical point of view since the energy released during decomposition 

is linked to the loss of nitro groups (Brill & James, 1993). 

From a statistical point of view, this model performed quite well with R²=0.84 (see table 2 and Figure 

2). Internal validations were also satisfactory. LOO and LMO cross-validation coefficients (Q²) ranged 

between 0.78 and 0.80 and Y-randomization ensured against a chance correlation with an average 

correlation coefficient R²YS=0.13 and a low standard deviation (SDYS=0.08) over the 500 

randomization iterations (as shown in Figure 3). Finally, the predictive power was remarkable with 

R²EXT=0.81 and Q²EXT=0.81, in particular in its AD since no molecule of the validation set was out of it 

(so, R²IN=0.81 and Q²IN=0.81). 

3.2 Model based on topological descriptors 

In a second step, 38 topological descriptors were considered. After the BMLR analysis, the following 

three-parameter regression in Eq. 3 was selected as the one presenting the most important 

correlation regarding its level of parameterization. 

-ΔH = -1385.4 + 142.0 0χ + 953.41ICavg–31.81IC (Eq. 3) 

where 0χ is the Randic index (order 0), 1ICavg is the average information content (order 1) and 1IC is 

the information content (order 1). 

The interpretation of the topological descriptors was more difficult since they mainly represent the 

shape of molecules. In the cases of biological effect, they are very likely understood as representing a 

molecular feature that interacts with biological receptors. In the case of impact sensitivity, subjacent 

mechanism is very different and does not issue from such steric interaction. If these descriptors also 

characterize the size of molecules, which is globally connected to the quantity of energy available for 

the decomposition, such direct interpretation was not evidenced since none of these descriptors was 

related to the chemical mechanisms involved in the decomposition of nitro compounds. 

The performances of this model were less good than the previous one (Eq. 2), in terms of correlation 

(R²=0.78) and robustness (Q²LOO=0.71). Nevertheless, the Y-randomization test exhibited no chance 

correlation and predictions, once considering the applicability domain of the model appeared 

satisfactory (R²IN=0.82). 

It has to be noticed that R²EXT value was lower (0.46) due to the large error in the prediction for the 

nitrobenzene molecule (more than 300 kJ/mol in error) which was not included into the AD of the 

model. This shows the importance of taking into account the applicability domain in the evaluation of 

the predictive power. 

The slight increase of values between R² and R²IN (0.04) could be considered in the present case as 

due to the use of small sets of data for both the training and the validation sets. However, both 

correlation and predictivity are significant. 
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3.3 Model based on both constitutional and topological descriptors 

In a last step, the whole set of 88 constitutional and topological descriptors was used to derive the 

final four-parameter model, which associated the best correlation regarding its number of 

descriptors among the regressions issued from BMLR analysis: 

-ΔH = 153.5 + 386.4 nNO2 – 78.9 nCH3 + 131.2 1χv – 327.7 0ICavg (Eq. 4) 

where nCH3 is the number of methyl groups,1χv is the Kier and Hall index (order 1), 0ICavg is the average 

information content (order 0). 

If nCH3,
1χv and 0ICavg are not directly interpretable in terms of chemical mechanism, the number of 

nitro groups was satisfactory included (like for the constitutional-based model) since it is in 

agreement with the general statements recognized on the decomposition process of nitro 

compounds. Besides this descriptor was the most significant in the model when considering its t-test 

value (9.30). 

The correlation of this model was also high with R²=0.85 and stable among the series of computed 

cross validation (Q²LOO=Q²5CV=0.76, Q²10CV=0.74). It did not issue from a chance correlation as 

demonstrated by the 500-iteration Y-randomization test (R²YS=0.13, SDYS=0.08). Finally, the predictive 

power calculated for the 11 molecules of the validation set was also good (with R²EXT=0.81). When 

considering the only compounds that were included in the AD of the model, R²IN value (0.87) was 

slightly higher than R² but, regarding experimental uncertainties (5-10%) and the size of the dataset, 

the difference between R²IN and R² (0.02) was not significant. Moreover, both R² and R²IN values were 

particularly remarkable. 

4 Discussion  

The three models developed in this study respect the OECD principles of validation for regulatory 

uses. Indeed, these models were defined starting from heats of decomposition obtained from an 

unique original reference to ensure that data were obtained using a single protocol. The algorithms 

of the models are simple and entirely defined on constitutional and topological descriptors. They are 

applicable for nitrobenzene derivatives that present no substituent in ortho position to the nitro 

group in an AD simply defined on the values of the descriptors included in the models. The detailed 

ranges of values for each descriptor in each model are available in supporting information (Table S4). 

Performances were revealed from internal and external validation tests: fitting evaluation for the 

molecules of the training set, LOO and LMO cross-validations, Y-randomization, predictions on an 

external validation set. 

From the three developed models, the ones presenting the best performances are those integrating 

constitutional descriptors (Eqs. 2 and 4). Indeed, they do not only propose significant predictivity in 

their applicability domains (R²IN=0.81 and 0.87, for Eqs. 2 and 4 respectively) but they are also 

satisfactory in terms of fitting and robustness (with R²=0.84-0.85 and Q²LOO=0.76-0.79). Moreover, 

these two models include the number of nitro groups that is directly related to the energy released 

during decomposition. The topological model (Eq. 3) presents globally inferior performances in 

particular in terms of correlation and robustness (R²=0.78 and Q²LOO=0.71). Moreover, no 

straightforward interpretation is evidenced for any of the constituting topological descriptors. 
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It has to be noticed that the nNO2 descriptor introduced in models of Eqs. 2 and 4 was already 

included in the decision tree developed in our previous work (Fayet, Del Rio, Rotureau, Joubert, & 

Adamo, 2011; Fayet, Rotureau, Joubert, & Adamo, 2011) for the prediction of the heat of 

decomposition of nitroaromatic compounds. Moreover, descriptors influenced by the presence of 

NO2 groups were also selected in the MLR model obtained for the only non-ortho substituted 

nitroaromatic compounds (Fayet, Rotureau, Joubert, & Adamo, 2011, which represent the only 

previous quantitative model to have been externally validated to predict the heat of decomposition 

of nitroaromatic compounds.  

-ΔH = 0.8 G – 3.8 WPSA1 – 4255.1 Qmax + 26.8 RPCS – 251.2   (Eq. 5) 

where G is the gravitation index, WPSA1 the weighted positive surface area, Qmax the maximal partial 

charge in the molecule and RPCS the relative positive charged surface area. This model was well 

correlated (R²=0.90), robust (Q²LOO=0.86), and presented remarkable predictive power for an external 

validation set (R²EXT=0.84), in particular in its applicability domain (R²IN=0.86). 

Compared to this model including quantum chemical descriptors (Fayet, Rotureau, Joubert, & 

Adamo, 2011), the two new models (Eq. 2 and 4) are slightly less fitted, for the molecules of the 

training set (R²=0.84-0.85). Moreover, a slight decrease in accuracy is observed from the predictions 

computed for the molecules of the validation set for the first model (R²IN=0.81 in this paper vs. 

R²IN=0.86 in our previous work). Nevertheless, the last model (Eq. 4), including both constitutional 

and topological descriptors, presents similar predictive ability (R²IN=0.87).  

Globally, the performances of these two new models remain very interesting in view of predictions, 

with nearly similar capabilities and less computer times than our previous model, which needed prior 

quantum chemical calculations. In particular, the constitutional-based model (Eq. 2) is very simple 

with high performances and represents the best compromise between performances and practical 

complexity for final users to obtain predicted data. 

5 Conclusion  

In this paper, new multilinear QSPR models were developed to predict the heats of decomposition of 

nitroaromatic compounds. In particular, the target molecules were nitrobenzene derivatives not 

substituted in ortho position to the nitro group. These models were derived from a series of 

constitutional and topological descriptors with the aim to achieve reliable predictions without any 

time expensive calculations. Three models were computed according to the OECD principles for 

validation for regulatory use from a dataset of 42 compounds using constitutional and/or topological 

descriptors. As a consequence, they can be used in a regulatory framework like REACH. 

High performances were exhibited in terms of correlation, robustness (including leave-many-out 

cross validations), absence of chance correlation (by Y-randomization) and predictive power for the 

two models including constitutional descriptors (Eqs. 2 and 4). Moreover, these two models were 

based on the number of nitro groups that is recognized to be linked to the energy released during 

the decomposition process. Finally, they present performances close to the ones of the previous 

quantum chemical model and the advantage to be easier to apply (without any time expensive 

preliminary calculations). 
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The model based only on constitutional descriptors was particularly interesting since it was very easy 

to use for prediction to any user without needing any complex calculations. 
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Table 1 – Experimental and predicted heats of decomposition (in kJ/mol) of nitroaromatic 

compounds from new QSPR models (Eqs. 2-4) compared to the previous one (Eq. 5 (Fayet, Rotureau, 

Joubert, & Adamo, 2011)) 

ID molecules expb 
calculated 

Eq. 2 Eq. 3 Eq. 4 Eq. 5 

training set 

1 2,6-dichloro-4-nitroaniline 264 280 325 315 284 

2 2-amino-5-nitrophenol 153 240 189 248 239 

3 3,5-dinitrobenzoic acid 674 686 656 717 679 

4 3,5-dinitrobenzyl chloride 711 686 569 708 673 

5 3-nitroacetoanilide 369 350 350 361 394 

6 3-nitroaniline 350 280 300 301 317 

7 3-nitroanisole 243 247 271 247 288 

8 3-nitrocinnamic acid 414 425 488 419 417 

9 3-nitrophenol 283 221 260 241 227 

10 3-nitrotoluene 149 286 242 220 212 

11 4-nitro-2-toluidine 306 296 185 228 315 

12 4-nitroacetoanilide 387 350 350 361 372 

13 4-nitroacetophenone 291 380 331 349 343 

14 4-nitrobenzaldehyde 421 380 390 352 394 

15 4-nitrobenzamide 319 331 336 350 321 

16 4-nitrobenzhydrazide 362 344 374 370 335 

17 4-nitrobenzyl alcohol 292 247 213 254 272 

18 4-nitrophenol 232 221 260 241 235 

19 4-nitrotoluene 213 286 242 220 192 

20 2-amino-4-nitroanisole 375 261 234 260 325 

21 2-amino-4-nitrophenol 130 240 189 248 173 

22 3,5-dinitrobenzonitrile 654 667 659 614 698 

23 3-nitrobenzoic acid 289 277 350 300 372 

24 3-nitrobenzoic acid methylester 256 305 374 302 277 

25 3-nitrophenylacetic acid 358 340 331 311 347 

26 4-nitroaniline 347 280 300 301 308 

27 4-nitrobenzoic acid methylester 302 305 374 302 264 

28 4-nitrobenzoyl chloride 408 380 413 343 303 

29 4-nitrobenzyl chloride 337 286 275 305 333 

30 4-nitrophenetole 270 266 293 324 249 

31 4-nitrophenylhydrazine 277 291 313 324 279 

validation set 

32 3,5-dinitrobenzamide 736 738 634 770 687 

33 3-nitroacetophenone 276 380 331 349 364 

34 3-nitrobenzaldehyde 373 380 390 352 389 

35 3-nitrobenzamide 311 331 336 350 334 

36 3-nitrobenzhydrazide 430 344 374 370 344 

37 3-nitrobenzyl alcohol 325 247 213 254 258 

38 4-nitroanisole 248 247 271 247 283 
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39 4-nitrobenzoic acid 284 277 350 300 332 

40 4-nitrocinnamic acid 506 425 488 419 414 

41 4-nitrophenylacetic acid 265 340 331 311 341a 

42 nitrobenzene 161 266 481a 302a 202 

  

 MAETR(%) 17 18 16 12 

  

 MAEIN (%) 18 15 13 18 
a molecule not included into the AD of the model 

b(Ando, Fujimoto, & Morisaki, 1991) 

 

Table 2 – Performances of the previous and new QSPR models 

 constitutional topological both previous modela 

Eq. 2 Eq. 3 Eq. 4 Eq. 5 

R² 0.84 0.78 0.85 0.90 

MAETR (%) 17 18 16 12 

Q²LOO 0.79 0.71 0.76 0.86 

Q²10CV 0.80 0.71 0.76 - 

Q²5CV 0.78 0.71 0.74 - 

R² YS 0.13 0.10 0.13 - 

SDYS 0.08 0.07 0.08 - 

R²EXT 0.81 0.46 0.81 0.84 

Q²EXT 0.81 0.42 0.81 - 

MAEEXT (%) 18 32 19 18 

R²IN 0.81 0.82 0.87 0.86 

Q²IN 0.81 0.81 0.87 - 

MAEIN (%) 18 15 13 17 
a(Fayet, Rotureau, Joubert, & Adamo, 2011) 
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Figure 1 – Distributions of the experimental values in the training and validation sets. 

 

Figure 2 – Experimental vs. predicted heats of decomposition (in kJ/mol) of nitroaromatic 

compounds based on Eq. 2. 

 

Figure 3 – Correlation of the models issued from Y-randomisation (R²random) vs. level of 

randomisation, as estimated by the correlation between the randomised and experimental values 

(R²(Yrandom/Yexp)). 

 


