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Abstract

A finely tuned balance between estrogens and androgens controls reproductive functions, and the last step of
steroidogenesis plays a key role in maintaining that balance. Environmental toxicants are a serious health concern, and
numerous studies have been devoted to studying the effects of endocrine disrupting chemicals (EDCs). The effects of EDCs
on steroidogenic enzymes may influence steroid secretion and thus lead to reproductive toxicity. To predict hormonal
balance disruption on the basis of data on aromatase activity and mRNA level modulation obtained in vitro on granulosa
cells, we developed a mathematical model for the last gonadal steps of the sex steroid synthesis pathway. The model can
simulate the ovarian synthesis and secretion of estrone, estradiol, androstenedione, and testosterone, and their response to
endocrine disruption. The model is able to predict ovarian sex steroid concentrations under normal estrous cycle in female
rat, and ovarian estradiol concentrations in adult female rats exposed to atrazine, bisphenol A, metabolites of methoxychlor
or vinclozolin, and letrozole.
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Introduction

Humans may be exposed to numerous chemicals that impact

endocrine activity, and notably alter androgen/estrogen balance

[1]. Among environmental chemicals, atrazine, vinclozolin,

methoxychlor, and bisphenol A were found to be of particular

concern. Atrazine, a triazine herbicide which has been widely used

in agriculture and is persistent in surface water, has been described

in several in vitro studies to increase estrogen through elevation of

aromatase levels and activity [2,3]. The fungicide vinclozolin has

been documented for the anti-androgenic activity of its metabolite

M2 in vitro [4] and in vivo [5]. Methoxychlor is an organochlorine

pesticide of known estrogenic activities in vitro and in vivo [6]; its

metabolite 2, 2-bis-(p-hydroxyphenyl)-1, 1, 1-trichloroethane

(HPTE) displays estrogenic, anti-estrogenic, and anti-androgenic

capacities in vitro [7]. Bisphenol A, a plasticizer, was clearly defined

as an estrogenic agent due to its capacity to bind estrogen receptor

with an EC50 in the sub-micromolar range [8]. As far as drugs are

concerned, a good example of pharmacologically-designed endo-

crine modifier may be letrozole [9]. This potent and highly specific

nonsteroidal competitive aromatase inhibitor, used for estrogen-

dependent breast cancer, has been characterized by a half

maximal inhibitory concentration (IC50) of 7 nM [10].

A potential target for endocrine disrupting chemicals (EDCs) is

steroidogenesis. In females, sex steroids are synthesized primarily

in the ovaries and derived from cholesterol through a series of

biochemical reactions [11]. Among steroidogenic enzymes,

cytochrome P450 aromatase (Cyp19), which catalyses the final

irreversible conversion of androgens to estrogens in granulosa cells

(GCs), appears to be a key target. Aromatase disruption is often

associated with EDC toxicity [12], and several assay guidelines

recommend testing chemicals for that endpoint [13]. Aromatase

expression is regulated by follicle-stimulating hormone (FSH),

through multiple signaling pathways including cyclic adenosine

monophosphate (cAMP)-dependent regulatory events [14]. In

GCs, the final steps of steroidogenesis are also mediated by 17b-

hydroxysteroid-dehydrogenases (Hsd17b1 and Hsd17b2), which

catalyze the conversion of inactive sex steroids to active ones via

Hsd17b1 or vice-versa by Hsd17b2 [15].

Assessing EDC toxicity is a challenge, given the complexity of

the endocrine system and despite the increasing development of

data on its workings. Most standardized ‘‘regulatory’’ tests

developed to study EDC toxicity involve rats. Those in vivo tests

naturally integrate hormone metabolism and feedback loops. They

typically look at relevant integrated toxicity endpoints, such as

impact on fertility [16]. In vitro models have also been extensively

developed: they are faster, cheaper, and they spare animal lives

[17]. They help the researcher to elucidate toxic mechanisms in a

simple isolated system and, when performed on human cells, they

avoid difficult interspecies transpositions.

Both characterization and quantification of toxicity mechanisms

are necessary for a reliable quantitative in vitro to in vivo

extrapolation (QIVIVE) [18]. In order to improve QIVIVE for
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endocrine toxicity, we developed and parameterized a dynamic

systems biology model of the final steps of steroidogenesis in rat

ovaries. We calibrated our mathematical model in a Bayesian

framework on the basis of in vitro experimental data obtained from

rat granulosa primary cell cultures. For cross-validation, the in vitro

model was transposed to an in vivo context and predictions were

compared with in vivo hormone dosage data obtained in control

animals. We finally used our model to predict the effects of five

selected EDCs on gonad estradiol (E2) secretion, based on in vitro

data following exposure to atrazine, bisphenol A, methoxychlor

metabolite HPTE, vinclozolin metabolite M2, and letrozole.

These chemicals were chosen based on their known endocrine

activity in vitro and in vivo.

Materials and Methods

Test Chemicals
Atrazine (CAS number 1912-24-9, purity 97.1%) was provided

by TCI Europe (Zwijndrecht, Belgium); methoxychlor (CAS

number 72-43-5, purity .95%), HPTE (CAS number 2971-36-0,

purity 97%), and bisphenol A (CAS number 80-05-7, purity 99%)

were purchased from Sigma Aldrich Chemical Co. (Saint-

Quentin-Fallavier, France); vinclozolin (CAS number 50471-44-

8, purity 99.5%) was from Greyhound Chromatography (Birken-

head, UK); vinclozolin M2 (CAS 83792-61-4, purity .98%) was

from Interchim (Montluçon, France).

In Vitro Experiments
Rat GC isolation and in vitro culture. Immature (21 days

old) Sprague-Dawley female rats (certified virus-free) were

purchased from Janvier (Le Genest-Saint-Isle, France). They were

housed with a 12 h light and 12 h dark cycle and received food

and water ad libitum. All procedures were reviewed and approved

by the Institutional Animal Care and Use Committee of INERIS.

All animals were 26 days old at the start of treatment. Each animal

was injected subcutaneously with diethylstilbestrol (DES; Sigma

Aldrich Chemical Co., Saint-Quentin-Fallavier, France) dissolved

in corn oil (100 mg/0.1 ml) every day for 3 days to increase the

number of GCs. On the third day, the animals were sacrificed by a

lethal intraperitoneal pentobarbital injection. Five animals were

sacrificed for each experiment. The ovaries were harvested, and

the associated fat, oviduct, and bursa ovary removed; the samples

were placed in ice-cold medium 199 (M199; Sigma Aldrich), and

punctured several times with a 26-gauge needle until the antral

follicles ruptured and released the GCs. The GC-rich medium was

centrifuged (200 g) for 5 min to obtain a GC pellet, which was

resuspended in Dulbecco’s modified Eagle medium/Ham’s F-12

nutrient mix (DMEM/F-12; Sigma Aldrich) containing 5% fetal

bovine serum, 100 mg streptomycin per ml, and 100 IU penicillin

per ml. The cells (300,000/ml) were plated into 12-well culture

plates (2 ml/well)), and grown at 37uC in a humidified atmosphere

with 5% CO2. The cells were allowed to attach for 72 h prior to

treatment to minimize any effects due to in vivo DES priming [19].

GC treatment. We performed two experimental studies: a

baseline (control) study with measurements at 4 h, and an ‘‘EDC

study’’ with control (0.1% dimethyl sulfoxide, DMSO, in serum-

free and phenol red-free culture medium) and four chemicals

(atrazine, bisphenol A, HPTE, and vinclozolin M2) at 10 mM in a

final concentration of 0.1% DMSO culture medium, with

measurements at 4 h. The chemical concentration was chosen

on the basis of relevant literature [20]. Cellular viability was

determined by trypan blue exclusion staining, visual inspection for

morphology, and cellular attachment.

mRNA level and direct aromatase activity

measurements. mRNA levels and direct aromatase activity

were quantified according to previously described methods [20].

Briefly, mRNA was extracted from the cells then reverse

transcribed. Target fragments were amplified by real-time

polymerase chain reaction. Aromatase enzymatic activity was

measured on microsomal fractions of GCs with the tritiated water

release assay [21]. These experimental data were expressed as

‘‘fold difference’’ between treated and control conditions. Differ-

ences of single doses from controls were statistically analyzed with

a Mann-Whitney non-parametric test. Differences with a P value

of less than 0.05 were considered to be statistically significant.

In Vivo Experiments
The female Sprague-Dawley rats used were approximately 8

weeks old at the start of chemical exposure. Estrous cycle staging

was done with vaginal smears collected twice a day and classified

microscopically as diestrus, proestrus, estrus, or metestrus [22]. We

performed two experimental studies: a baseline (control) study,

measuring ovarian steroid concentrations across the estrous cycle,

and an ‘‘EDC study’’ where each animal in diestrus stage was

administered a test chemical or vehicle by gavage (atrazine

200 mg/kg, dissolved in 0.5% methylcellulose; bisphenol A or

methoxychlor at 200 mg/kg, dissolved in corn oil; vinclozolin

100 mg/kg, dissolved in corn oil). The animals were sacrificed six

hours after treatment; ovaries were harvested, weighed, and

homogenized in PBS-buffered water for tissue dosages. Atrazine,

bisphenol A, methoxychlor metabolite HPTE, vinclozolin metab-

olite M2, testosterone (T), androstenedione (A), estrone (E1), and

E2 were detected and quantified in whole ovaries by liquid

chromatography with tandem mass spectrometry detection (LC–

MS/MS) [23]. Differences between treated and control animals

were statistically analyzed with a Mann-Whitney non-parametric

test. Differences with a P value of less than 0.05 were considered to

be statistically significant.

Model Chemical
We choose to include an additional compound to further test

and cross-validate our mathematical model. Letrozole appeared to

be a very good choice, in the sense that it is pharmacologically

designed to specifically inhibit aromatase, which is one of the main

target described in our computational model. This compound was

not tested on our in vitro and in vivo systems, but experimental data

were gathered from the literature [10,24].

Mathematical Model Development
Model overview. The model describes the final metabolic

and transport steps of the steroidogenesis pathways in rat GCs

(Figures 1 and 2). Metabolic steps include synthesis and

degradation of Cyp19, Hsd17b1, and Hsd17b2 mRNAs and

proteins, conversion of A into T, E1, and E2, and modulation of

steroidogenic enzyme expression by FSH or an EDC. In vitro,

transport includes GC uptake and secretion of A, T, E1, and E2. In

vivo, transport also includes entry of A and T in ovaries, and

exchange of hormones between extracellular space, GCs, and

other kinds of cells (Figure 2).

Metabolic reactions. mRNA and protein synthesis. Cyp19 and

Hsd17b1 mRNA quantities in GCs (emRNA in pg/cell, with

e=Cyp19, Hsd17b1, or Hsd17b2) depend on their synthesis with

baseline rate nmRNA,e (pg/min). This rate is eventually altered by an

EDC X (inducing fold-change fX (unitless)), upregulated by FSH

(pg/cell) (with slope factors k (/pg FSH), and affected by

experimental variability (due to differences in cell pre-treatment,

modeled by a variability factor sL (arbitrary unit)); mRNA levels

In Silico Model of Rat Ovarian Steroidogenesis
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depend also on their degradation, with rate constant dmRNA (/min):

LCyp19mRNA

Lt
~nmRNA:Cyp19|sL|f X ,Cyp19,t

:

(1zkCyp19
:FSHGC){dmRNA

:Cyp19mRNA

ð1Þ

LHsd17b1mRNA

Lt
~nmRNA:Hsd17b1|sL|f X ,Hsd17b1,t

:

(1zkHsd17b1
:FSHGC){dmRNA

:Hsd17b1mRNA

ð2Þ

Fold-change for species emRNA was obtained from experimentally

measured mRNA levels and computed as:

fX ,emRNA ,t~
e
mRNA t

e
mRNA t~0

ð3Þ

In contrast, the Hsd17b2 mRNA quantity in GCs is not

assumed to be strongly controlled by FSH [25] nor affected by

EDCs, and the corresponding equation is simply:

LHsd17b2mRNA

Lt
~vmRNA:Hsd17b2

:sL{dmRNA
:Hsd17b2mRNA ð4Þ

For the three enzymes e (in pg/cell), the following mass-balance

equation, with synthesis rate constant nprot,e (/min) and degradation

rate constant dprot (/min), applies:

Le

Lt
~vprot:e:emRNA{dprot:e ð5Þ

Our experiments on GCs [20] gave us Hsd17b1 and Hsd17b2

initial mRNA and protein quantities, relative to Cyp19. We

translated them to absolute values (pg/cell) on the basis of the initial

quantities of Cyp19 mRNA and protein in GCs obtained from the

literature (Table 1). We assumed that these values were steady-state

values, in the absence of FSH stimulation, EDC alteration, or

experimental variability. Values for the mRNA and protein

degradation rate constants (dmRNA,e and dprot,e) were found in the

literature (Table 2). Using the above steady-state assumption, we set

equations 1, 2, and 4 for mRNA quantities, and equation 5 for

protein quantities, equal to zero and rearranged them for nmRNA.e

Figure 1. Overview of the computational model for steroidogenesis last metabolic steps in a rat granulosa cell. The transcription and
translation events for the three last major enzymes involved in estradiol synthesis, and sex steroid synthesis itself, are modeled, with relevant FSH
control, endocrine disrupting chemical (EDC) modulation, or methoxychlor (MXC) aromatase competitive inhibition. Steroids can be transported in
and out of cell. In vitro, the exterior compartment corresponds to the culture medium; in vivo it corresponds to the ovary tissue (see Figure 2). Aliases
(repeated species labels) are used for clarity but correspond in fact to a unique species.
doi:10.1371/journal.pone.0053891.g001

In Silico Model of Rat Ovarian Steroidogenesis
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and nprot.e. The value of nmRNA.e was computed for the three enzymes

e as:

vmRNA:e~emRNA,t~0
:dmRNA ð6Þ

Similarly, assuming that one mRNA gets translated into one

protein, the value of nprot.e was computed for the three enzymes e as:

nprot:e~
et~0

:dprot:dmRNA

vmRNA:e

ð7Þ

Table 1. Granulosa cell specific mRNA and protein initial values used.

Initial values Name Experimental data (ratio to aromatase) Value (pg/cell)

Aromatase mRNA quantity Cyp19mRNA 1 4.9661028a

Hsd17b1 mRNA quantity Hsd17b1mRNA 2.07 1.0361027b

Hsd17b2 mRNA quantity Hsd17b2mRNA 0.14 7.0061029b

Aromatase protein quantity Cyp19 1 0.1c

Hsd17b1 protein quantity Hsd17b1 2.1 0.21b

Hsd17b2 protein quantity Hsd17b2 0.14 0.014b

aHarada et al., 1999 [45].
bValues obtained from our relative in vitro data and the absolute values found in the literature for aromatase (see text).
cAuvray et al., 2002 [46].
doi:10.1371/journal.pone.0053891.t001

Table 2. Model parameter values (for one cell) obtained from direct measurements on granulosa cells in vitro or from the
published literature values.

Parameter (units) Symbol Value

mRNA degradation (/min) dmRNA 6.0061023a

protein degradation (/min) dprot 3.0061023a

Aromatase mRNA synthesis (pg/min) umRNA.Cyp19 3.00610210b

Hsd17b1 mRNA synthesis (pg/min) umRNA.Hsd17b1 6.00610210b

Hsd17b2 mRNA synthesis (pg/min) umRNA.Hsd17b2 4.20610211b

Aromatase protein synthesis (/min) uprot.Cyp19 6000b

Hsd17b1 protein synthesis (/min) uprot.Hsd17b1 6300b

Hsd17b2 protein synthesis (/min) uprot.Hsd17b2 6000b

Maximal reaction rates Vmax (pmoles/min/pg enzyme)

Hsd17b2, T R A reaction lHsd17b2,T 6.6561028c

Hsd17b2, E2 R E1 reaction lHsd17b2,E2 7.9161028c

Michaelis-Menten constants (pmoles)

Hsd17b2, for T jHsd17b2,T 5.6761026c

Hsd17b2, for E2 jHsd17b2,E2 5.4061026c

A extra- over intra-cellular partition coefficient (unitless) Roi,A 0,0124d

T extra- over intra-cellular partition coefficient (unitless) Roi,T 0,013d

E1 extra- over intra-cellular partition coefficient (unitless) Roi,E1 0,0084d

E2 extra- over intra-cellular partition coefficient (unitless) Roi,E2 0,0108d

A excretion rate constant (ml/min) Kout,A 161028e

T excretion rate constant (ml/min) Kout,T 161028e

E1 excretion rate constant (ml/min) Kout,E1 161028e

E2 excretion rate constant (ml/min) Kout,E2 161028e

Ovary blood flow (ml/min) Fov 0.2654f

Individual granulosa cell volume (ml) VGC 0.2761029 mlg

A, androstenedione; T, testosterone; E1, estrone; E2, estradiol.
aHargrove, 1993a [47]; Hargrove, 1993b [48].
bmRNA and protein synthesis rates were calculated under steady-state assumption with data from direct measurements on granulosa cells in vitro (see text).
cRenwick et al., 1981 [49].
dBreen et al., 2009 [26].
eData were arbitrately fixed.
fPlowchalk and Teeguarden, 2002 [50].
gDirect in vitro measurement.
doi:10.1371/journal.pone.0053891.t002
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Steroid biotransformation. The relevant enzymatic reac-

tions in GCs, catalyzed by Cyp19, Hsd17b1, and Hsd17b2, were

modeled by the following competitive Michaelis-Menten meta-

bolic terms ai, where le,Z (pmoles/min/pg enzyme) and je,Z
(pmoles) denote respectively Vmax and Km parameters for enzyme e

and substrate Z (A, T, E1, or E2).

Methoxychlor metabolite HPTE inhibits aromatase activity

directly and competitively [20]. To model that effect, the

parameter fM in equations 9 and 12 below represents the fold-

change of the aromatase Km for its substrate Z (jCyp19,Z), observed
in vitro. Since aromatase activity is inversely proportional to its Km,

this fold-change fM corresponds to the inverse of fold-change for

aromatase enzymatic activity between treated and control cells.

Fold-change for Km parameters jCyp19,A and jCyp19,T corresponds

to:

fM,j
Cyp19,Z

,t~
Measured aromatase activity in control cellst

Measured aromatase activity in treated cellst
ð8Þ

The conversion of A into E1 by aromatase takes into account T

competition for the enzyme (the steroids are subscripted with GC,
denoting the intra-cellular quantities):

a1~
lCyp19,A:Cyp19:AGC

jCyp19,A
:fM :(1z

TGC
jCyp19,T

:fM
)zAGC

ð9Þ

Conversion of A into T by Hsd17b1, with E1 competition:

a2~
lHsd17b1,A

:Hsd17b1:AGC

jHsd17b1,A
:(1z

E1GC
jHsd17b1,E1

)zAGC

ð10Þ

Conversion of T into A by Hsd17b2, with E2 competition:

a3~
lHsd17b2,T

:Hsd17b2:TGC

jHsd17b2,T
:(1z

E2GC
jHsd17b2,E2

)zTGC

ð11Þ

Conversion of T into E2 by aromatase, with A competition:

a4~
lCyp19,T :Cyp19:TGC

jCyp19,T
:fM :(1z

AGC
jCyp19,A

:fM
)zTGC

ð12Þ

Conversion of E1 into E2 by Hsd17b1, with A competition:

a5~
lHsd17b1,E1

:Hsd17b1:E1GC

jHsd17b1,E1
:(1z

AGC
jHsd17b1,A

)zE1GC

ð13Þ

Conversion of E2 into E1 by Hsd17b2, with T competition:

a6~
lHsd17b2,E2

:Hsd17b2:E2GC

jHsd17b2,E2
:(1z

TGC
jHsd17b2,T

)zE2GC

ð14Þ

In order to model the isotopic measurement of tritiated water

(T2O) production during the conversion of tritiated A to E1 (see

in vitro experimental section), we need the formation rate of T2O,

which is simply:

LT2OGC

Lt
~a7(~a1) ð15Þ

The parameters of the above equations are listed in Table 2.

Transport kinetics. The model was first developed to

simulate in vitro conditions, and then adapted to model in vivo

conditions. While the GC internal workings remained the same,

different exchanges with the environment had to be described

(Figure 2).

Transport kinetics in vitro. The in vitro model is divided in two

compartments: GCs and culture medium (Figure 2A). For A

(pmoles), T (pmoles), E1 (pmoles), E2 (pmoles), and FSH (pg),

simple diffusion kinetics were assumed. The hormone quantity in a

GC (XGC) has a rate of change equal to:

LXGC

Lt
~Kin,X

:

Xmed

Vmed

{Kout,X
:

XGC

VGC

ð16Þ

where Kin,X (ml/min) is the rate of medium (‘‘med’’) uptake by the

GC, Kout,X (ml/min) the rate of excretion by the GC, Xmed (pmoles

or pg) the hormone quantity for one GC in the medium (total

quantity divided by the number of cells used in a given assay), Vmed

(ml) the volume of culture medium for one GC (total volume

divided by the number of cells), and VGC (ml) the volume of one

GC. Kin,X was computed by dividing Kout,X by the extra- over intra-

cellular partition coefficient Roi,X (unitless), given in the literature

[26]:

Kin,X~
Kout,X

Roi,X

ð17Þ

Conversely, the hormone quantity for one cell in the medium

(Xmed) has a rate of change equal to:

LXmed

Lt
~{Kin,X

:

Xmed

Vmed

zKout,X
:

XGC

VGC

ð18Þ

The cellular kinetics of A, T, E1, and E2 quantities depend on

the entry in and exit from the cell and on their metabolism by

Cyp19, Hsd17b1, or Hsd17b2:

LAGC

Lt
~Kin,A

:

Amed

Vmed

{Kout,A
:

AGC

VGC

{a1{a2za3 ð19Þ

LTGC

Lt
~Kin,T

:

Tmed

Vmed

{Kout,T
:

TGC

VGC

za2{a3{a4 ð20Þ

LE1GC

Lt
~Kin,E1

:

E1med

Vmed

{Kout,E1
:

E1GC

VGC

za1{a5{a6 ð21Þ

In Silico Model of Rat Ovarian Steroidogenesis
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LE2GC

Lt
~Kin,E2

:

E2med

Vmed

{Kout,E2
:

E2GC

VGC

za4za5{a6 ð22Þ

where the ai are the Michaelis-Menten metabolic terms described

in equations 9 to 14. The diffusion and transport of T2O in the

in vitro system was not modeled, as the total quantity of T2O

formed was directly measured.

Transport kinetics in vivo. For in vivo simulations (Figure 2B), the

ovary was subdivided into three compartments: GCs, thecal and

interstitial cells (‘‘others’’), and extracellular/vascular space

(‘‘ext’’). The transport kinetics of hormone X in each cellular

compartment depend on entry rate constant (Kin) and exit rate

constant (Kout) for a cell, on the hormone concentrations in each

cell, and on the number of cells (NGCs or Nothers). The differential

equations for the ‘‘GC’’ and the ‘‘other cell’’ compartments are:

LXGCs

Lt
~(Kin,X

:

Xext

Vext

{Kout,X
:

XGC

VGC

):NGCs ð23Þ

LXothers

Lt
~(Kin,X

:

Xext

Vext

{Kout,X
:

Xothers

Vothers

):Nothers ð24Þ

where Vext and Vothers are the volumes of the extracellular and

‘‘other cell’’ compartments, respectively.

The differential equation for quantity Xext in the extracellular

compartment is:

LXext

Lt
~{

LXGCs

Lt
{

LXothers

Lt
zQinput,X

{Fov
:

VextzVGC
:NGCszVothers

Vov,diestrus

:

Xext

Vext

ð25Þ

where Qinput,X (pmoles or pg/min) is the rate of input of hormone X

in the ovary (coming from blood), Fov (ml/min) the efflux of X from

the ovary (clearance by blood flow), and Vov,diestrus the ovarian

volume at diestrus (which was set at 0.05 ml [27]). For mimicking

the female estrus cycle in vivo, Qinput,X for FSH and androgens were

modeled as cyclic forcing functions, which were adjusted to give

ovarian concentrations matching our in vivo physiological obser-

vations (see Figure 3). Qinput,X is determined as:

Qinput,X~Qbase,XzQscale,X
:Qshape,X ð26Þ

where Qbase,X (pmoles or pg/min) is the constant baseline

concentration of hormone X, Qscale,X (unitless) the constant scale

for hormone X magnitude, and Qshape,X (pmoles or pg/min) the

variable magnitude of hormone X (adjusted to match the known

hormone concentrations).

The time courses of NGCs, Vext, and Vothers during the estrous cycle

were also modeled by forcing functions. The intracellular kinetic

equations of the various hormones were the same as in the in vitro

model (see metabolic reaction section).

Parameter value assignment and model

calibration. Whenever possible, the model parameters were

set to meaningful and physiologically based values that we directly

measured in vitro or that we found in the published literature

(Table 2).

The remaining model parameters (Table 3) were calibrated

using in vitro experimental data that we developed ourselves (see

above, in vitro data section), or that were published in the literature

(Information S1). A Bayesian numerical approach, Markov Chain

Monte Carlo (MCMC) simulations [28], was used.

The published in vitro data we used to calibrate the model

included different cell pre-treatment protocols, which induced a

large inter-study variability in baseline transcription rates nmRNA.e.

That random effect was modeled with a variability factor sL (see

equations 1, 2, and 4), assumed to be log-normally distributed

around a mean ms, with variance S1. The hyperparameters ms and

S1 were in turn assigned vague prior distributions (Table 3). The

individual random effects sL (one per data set used, see

Information S1), ms, and S1 were calibrated together with the

other parameters.

Figure 2. Overview of the compartments used to model in vitro (A) or in vivo (B) hormone transports. In vitro (A), the exterior
compartment corresponds to the culture medium. In vivo (B), the ovary tissue is subdivided into three compartments: granulosa cells, ‘‘other cells’’ for
thecal and interstitial cells, and extracellular space.
doi:10.1371/journal.pone.0053891.g002
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Figure 3. Experimental data vs predictions for FSH and sex steroid hormones in normal cycling rat. The black line represents mean
model predictions with 95% confidence interval (grey band); points represent our experimental observations (mean of 10 measurements 6 standard
deviation).
doi:10.1371/journal.pone.0053891.g003
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The other parameters to be calibrated were assigned a prior

distribution (Table 3). We mostly used lognormal distributions

with geometric means set at physiologically relevant values. The

geometric standard deviations were set to 2 or 1.2 for the

parameters for which we had better information (Table 3). The

data likelihoods were assumed to follow a lognormal distribution

around the model predictions, a standard assumption with such

measurements. The measurement error variances, which were

assumed to be different between mRNA/protein quantities (S2)

and hormone measurements (S3) (Table 3), were calibrated

together with the other (physiological) parameters. A total of 24

parameters (11 physiological and 13 statistical) were MCMC

sampled.

MCMC simulations (Metropolis-Hastings algorithm) were

performed in triplicate chains of 20,000 iterations. For each

model parameter sampled, convergence was evaluated using the

last 10,000 iterations from each chain and the potential scale

reduction criterion ^�R�R of Gelman and Rubin [29].

Flux Analyses of In Vitro and In Vivo Experiments
Maximum a posteriori probability estimates of the calibrated

parameters (Table 4) were used to do metabolic flux analyses [30],

computing the rate of each steroid biotransformation reaction (a1
to a6, equations 9 to 14) as a function of time, to determine the

predominant reactions for the conversion of A to E2.

Model Cross-validation Using In Vivo Data
In order to evaluate the predictive capacities of the model, we

used random parameter vectors from their joint posterior

distributions obtained by calibration with in vitro data (Table 4),

and some other parameter distributions (Table 5), to simulate

in vivo conditions. Table 5 includes parameters which were not

calibrated from in vitro data because reasonable values were

obtained for them in the literature, but which nonetheless have

in vivo variability. We then simply compared the model predictions

to the corresponding in vivo data. The cyclic entries of androgens

and FSH in GCs and the time-varying number of ovarian cells

were modeled as described in section ‘‘Transport kinetics in vivo’’.

Predictive Simulations of Endocrine Disruption
To evaluate the capacity of the above model to predict in vivo

effects of EDCs on E2 secretion on the basis of in vitro data, we ran

a series of simulations of endocrine disruption by atrazine,

bisphenol A, methoxychlor metabolite HPTE, vinclozolin metab-

olite M2, and letrozole over two estrous cycles. The mRNA and

Km fold-changes fX (equations 1–3, 8, 9, and 12) were changed to

their experimentally observed values (see Table 6), starting eight

hours after the beginning of the second modeled diestrus. We then

compared the in vivo E2 quantities measured experimentally in

EDC-treated females in diestrus with the model predictions. The

hypothesis that the distributions of experimental data and model

Table 3. Prior distributions of the model parameters (for one granulosa cell) to be calibrated by MCMC sampling.

Parameter (units) Symbol Prior distribution

FSH effect on aromatase mRNA transcription (/pg FSH) kCyp19 U (0, 16107)a

FSH effect on Hsd17b1 mRNA transcription (/pg FSH) kHsd17b1 U (0, 16106)a

Maximal reaction rates Vmax (pmoles/min/pg enzyme)

Aromatase

A R E1 reaction lCyp19,A LN (1.3361027, 1.2)a,b,c,d

T R E2 reaction lCyp19,T LN (1.3361027, 2.0)d

Hsd17b1

A R T reaction lHsd17b1,A LN (7.5961028, 2.0)e,f,g

E1 R E2 reaction lHsd17b1,E1 LN (1.0361025, 2.0)e,f,g

Michaelis-Menten constants (pmoles)

Aromatase

For A jCyp19,A LN (8.1061029, 1.2) a,b,c,d

For T jCyp19,T LN (3.2461028, 2.0)d

Hsd17b1

For A jHsd17b1,A LN (4.3261025, 2.0) e,f,g

For E1 jHsd17b1,E1 LN (5.2961026, 2.0) e,f,g

Mean inter-study random effect (arbitrary unit) m0 LN (1, 2.0)

Measurement variance for inter-study random effects S1 HN (0.5)

Measurement variance for data likelihood of mRNA and proteins S2 HN (0.2)

Measurement variance for data likelihood of hormone measurements S3 HN (0.2)

LN (geometric mean, geometric SD): lognormal distribution; U (min, max): uniform distribution; HN (SD): halfnormal distribution with mean at zero.
Prior distribution for Vmax and Km parameters and for FSH effects are obtained and estimated from direct measurements on granulosa cells in vitro.
aQuignot et al., 2012a [20].
bOdum et al., 2001 [51].
cAuvray et al., 2002 [46].
dKrekels et al., 1990 [52].
eIshikura et al., 2006 [53].
fRenwick et al., 1981 [49].
gSteckelbroeck et al., 2003 [54].
doi:10.1371/journal.pone.0053891.t003
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predictions were identical was statistically tested with a two-sample

Kolmogorov-Smirnov test [31]. Differences with a P value of less

than 0.05 were considered to be statistically significant.

Software Used
Cell Designer 4.2 [32] was used to produce Figure 1. Model

simulations, MCMC simulations for model calibration, and flux

analyses were performed with GNU MCSim v5.4.0 [28].

Statistical analyses and plots were performed with R, version

2.14.0 [33].

Results

In Vitro Experimental Results
To evaluate and quantify how the selected EDCs affect

aromatase and Hsd17b mRNA levels, as well as aromatase

function, we exposed rat primary GCs (or microsomal fractions for

direct aromatase activity) to atrazine, bisphenol A, methoxychlor

metabolite HPTE, or vinclozolin metabolite M2. The chemical

concentration used corresponded to the highest one found in rat

ovaries following oral exposure to a high dose of each selected

EDC [23]. None of the chemicals tested affected cell viability, as

assessed with trypan blue exclusion staining and morphological

evaluation. The purpose for measuring aromatase activity on

microsomes (rather than in entire cells) was to discriminate a direct

effect of chemicals at the functional protein level from an effect

due to altered protein levels. Table 6 illustrates the fold-changes

(relative to appropriate controls) for aromatase direct enzymatic

activity, and aromatase and Hsd17b1 mRNA level modulation. In

our experiments, Hsd17b2 mRNA levels were too low to be

quantified. Atrazine, bisphenol A, and vinclozolin metabolite M2

did not affect aromatase direct activity, whereas HPTE decreased

it by 11%.

Atrazine increased aromatase and Hsd17b1 mRNA levels with

fold-inductions of 1.94 and 3.04, respectively. Bisphenol A

increased 1.61-fold the amount of aromatase mRNA levels, but

did not modify the Hsd17b1 mRNA levels. HPTE did not affect

aromatase or Hsd17b1 mRNA levels. Vinclozolin up-regulated

3.13 and 1.61-fold aromatase and Hsd17b1 mRNA levels,

respectively.

Experimental in vitro data for letrozole were found in the

literature [10]. Hence, at the concentration of 50 nM, which

corresponds to that found in rat ovaries after treatment with

letrozole at 5 mg/kg, aromatase activity was decreased to 29%

compared to control.

In Vivo Experimental Results: Baseline Study
Gonadal sex steroid and blood FSH concentrations in healthy

cycling female rats were measured at several times, falling in

Table 4. Summary statistics of the parameter posterior distributions after Bayesian calibration of the in vitro model.

Parameter Average SD

Maximum a

posteriori

probability

estimates 0.5 percentile 2.5 percentile 97.5 percentile 99.5 percentile

kCyp19 2.086106 4.046105 2.086106 1.206106 1.366106 2.976106 3.276106

kHsd17b1 4.556105 1.766105 6.046105 1.086105 1.596105 8.516105 9.386105

lCyp19,A 1.0461027 1.7861028 1.0761027 6.5461028 7.3661028 1.4461027 1.5961027

lCyp19,T 3.7261027 2.1661027 2.6761027 8.3961028 1.1561027 9.6161027 1.3361026

lHsd17b1,A 1.0361027 7.8661028 5.6561028 1.3061028 2.1261028 3.1461027 4.7661027

lHsd17b1,E1 3.2261025 1.9861025 1.7861025 6.5961026 9.4261026 8.5761025 1.0661024

jCyp19,A 8.3261029 1.5361029 8.2561029 5.1661029 5.761029 1.1761028 1.3261028

jCyp19,T 4.1261028 3.1861028 1.2461028 5.5561029 8.2961029 1.2461027 1.761027

jHsd17b1,A 6.4961025 4.9361025 4.8461025 9.5861026 1.3861025 1.9861024 2.7461024

jHsd17b1,E1 2.9161026 1.9661026 1.3061026 4.7461027 6.6161027 8.0061026 1.1261025

m0 0.407 0.163 1.46 0.131 0.177 0.81 1.08

S1 1.43 0.295 0.265 0.803 0.911 2.07 2.24

sL1 1.07 2.1 0.117 0.0144 0.0367 5.42 19

sL2 1.86 0.817 1.99 0.552 0.728 3.85 5.1

sL3 0.0376 0.0181 0.0293 0.0109 0.0143 0.0839 0.116

sL4 0.0314 0.0148 0.0193 0.00923 0.0122 0.0667 0.0938

sL5 4.78 2.94 2.86 1.12 1.47 12.3 18.6

sL6 0.028 0.0127 0.0213 0.00912 0.0111 0.0612 0.0808

sL7 0.158 0.0306 0.153 0.0938 0.107 0.226 0.259

sL8 0.696 0.422 0.612 0.129 0.188 1.75 2.48

sL9 0.971 1.63 0.114 0.0182 0.0329 4.88 11.7

sL10 0.685 0.101 0.685 0.46 0.506 0.916 1.03

S2 0.648 0.0842 0.626 0.47 0.503 0.832 0.901

S3 0.48 0.111 0.501 0.251 0.29 0.752 0.802

Each sLi corresponds to the specific inter-study random effect sL for each simulation set described in Information S1.
doi:10.1371/journal.pone.0053891.t004
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different periods of the estrous cycle (Figure 3). Those results are

well in agreement with the published scientific literature [34].

Model Calibration
Twenty-four model parameters were jointly calibrated using

MCMC simulations. The three chain simulations converged after

10,000 iterations ( ^�R�R was at most 1.01 for all sampled parameters).

The posterior fit after parameter Bayesian calibration has an

average absolute deviation of 18.82% between data and predic-

tions.

Table 4 presents summary statistics of the posterior distributions

for the parameters calibrated. Those statistics are based on 30,000

Table 5. Model parameter distributions used to describe in vivo variability (in addition to those of Table 4).

Parameter (units) Symbol Prior distribution

FSH dose rate: base concentration Qbase,FSH LN (330, 1.2)

FSH dose rate: scale concentration Qscale,FSH LN (1450, 1.2)

A dose rate: base concentration Qbase,A LN (1.2, 1.2)

A dose rate: scale concentration Qscale,A LN (18, 1.2)

T dose rate: base concentration Qbase,T LN (3, 1.2)

T dose rate: scale concentration Qscale,T LN (13, 1.2)

Ovary blood flow (ml/min) Fov LN (0.2654, 1.1)

A excretion rate constant (ml/min) Kout,A LN (161028, 2.0)

A extra- over intra-cellular partition coefficient (unitless) Roi,A LN (0.0124, 1.2)

T excretion rate constant (ml/min) Kout,T LN (161028, 2.0)

T extra- over intra-cellular partition coefficient (unitless) Roi,T LN (0.0130, 1.2)

E1 excretion rate constant (ml/min) Kout,E1 LN (161028, 2.0)

E1 extra- over intra-cellular partition coefficient (unitless) Roi,E1 LN (0.0084, 1.2)

E2 excretion rate constant (ml/min) Kout,E2 LN (161028, 2.0)

E2 extra- over intra-cellular partition coefficient (unitless) Roi,E2 LN (0.0108, 1.2)

mRNA degradation (/min) dmRNA LN (0.006, 1.2)

protein degradation (/min) dprot LN (0.003, 1.2)

Aromatase mRNA synthesis (pg/min) umRNA.Cyp19 LN (3610210, 1. 2)

Hsd17b1 mRNA synthesis (pg/min) umRNA.Hsd17b1 LN (6610210, 1. 2)

Hsd17b2 mRNA synthesis (pg/min) umRNA.Hsd17b2 LN (4.2610211, 1. 2)

Aromatase protein synthesis (/min) uprot.Cyp19 LN (6000, 1.2)

Hsd17b1 protein synthesis (/min) uprot.Hsd17b1 LN (6300, 1.2)

Hsd17b2 protein synthesis (/min) uprot.Hsd17b2 LN (6000, 1.2)

Maximal reaction rates Vmax (pmoles/min/pg enzyme)

Hsd17b2, T R A reaction lHsd17b2,T LN (6.6561028, 2.0)

Hsd17b2, E2 R E1 reaction lHsd17b2,E2 LN (7.9161026, 2.0)

Michaelis-Menten constants (pmoles)

Hsd17b2, for T jHsd17b2,T LN (5.6761028, 2.0)

Hsd17b2, for E2 jHsd17b2,E2 LN (5.4061026, 2.0)

LN (geometric mean, geometric SD): lognormal distribution.
doi:10.1371/journal.pone.0053891.t005

Table 6. Modulation (fold-change) of steroidogenic enzymes mRNA levels and aromatase enzymatic activity following exposure of
granulosa cells to selected chemicals.

Measurements Atrazine Bisphenol A

Methoxychlor

metabolite HPTE

Vinclozolin metabolite

M2 Letrozole

Direct aromatase enzymatic activity 0.9960.11 0.9460.14 0.89* 60.11 0.9860.09 0.2960.10a

Aromatase mRNA levels 1.94* 61.23 1.61* 61.15 1.0661.15 3.13* 61.04 Not measured

Hsd17b1 mRNA levels 3.04* 63.71 1.4161.62 1.3260.42 1.61* 60.80 Not measured

Fold-changes: mean 6 standard deviation.
*Statistically different from control, p,0.05.
aOdum et al., 2002 [10].
doi:10.1371/journal.pone.0053891.t006
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iterations (the last 10,000 iterations from each of the three chains).

For FSH effect on aromatase and Hsd17b1, while prior

distributions were quite vague (see Table 3), posterior distributions

indicated that the effect of FSH on aromatase is about four times

higher than its effect on Hsd17b1. Vmax and Km for aromatase had

informative priors and the posterior distributions were close to

them; this probably may confirm the prior knowledge. However,

although we used the same aromatase Vmax prior for A and T,

posterior distributions revealed a 3-fold higher Vmax for T. On the

contrary, according to posterior distributions, the aromatase Km for

A is 5-fold smaller than the one for T. The posterior distributions

for Hsd17b1 Vmax and Km were modified by a factor 1 to 2 for

jHsd17b1,E1, jHsd17b1,A, and lHsd17b1,A, and by a factor 3 for

lHsd17b1,E1. The average inter-study variability factor was about

40%. Study-specific variability factors ranged from 0.03 to about

5. The measurement error variances corresponded to a coefficient

of variation of about 65% for mRNA/protein quantities (S2), and

48% for hormone measurements (S3).

Flux Analyses of In Vitro and In Vivo Experiments
Figure 4A, B shows the results of A, E1, T, and E2 in vitro

interconversion flux analysis 48 h after addition of the substrate A

(200 nM), with or without FSH (20 ng/ml). The flux value for the

reference reaction A to E1 increased from 7.2961029 pmoles/

min/cell (without FSH) to 8.7261028 pmoles/min/cell (with

FSH). The other reaction relative values show that the preferential

pathway for E2 synthesis in GCs in vitro is conversion of A into E1,

which is then converted into E2, both with or without FSH.

Figure 4C, D, E shows the results of steroid hormone in vivo
interconversion flux analysis at different times of the estrous cycle.

The flux value for the reference reaction A to E1 increased from

5.1061029 pmoles/min/cell at the estrus stage to 6.0961029

pmoles/min/cell at the diestrus stage and to 6.1761029 at the

proestrus stage. Those in vivo results, which show a preferential

pathway for E2 synthesis trough E1 conversion, itself coming from

A, are in accordance with the in vitro ones. Some differences

between in vitro and in vivo flux analyses can be noted, like the

greater conversion of T to E2 in vivo than in vitro, or the relative

importance of the retroconversions of T and E2 to A and E1,

respectively, in in vitro experiments compared to in vivo ones.

In Vivo Model Simulation
In order to evaluate the model accuracy, we set the GC model

parameters in vivo to the values found by calibration with in vitro
data. In vivo parameter uncertainty and variability were modeled

by distributions of hormone inputs, clearances, mRNA/protein

degradation and specific synthesis, and Hsd17b2 apparent kinetic

constant parameters (Table 5). These distributions, used in inputs

to Monte Carlo simulations, yielded predictive confidence

intervals.

We compared the model-predicted ovarian steroid concentra-

tions with the data from baseline experiments (Figure 3). The

mean of our model predictions were within the 95% confidence

interval of the model predictions. A quantitatively close profile for

predicted data and experimental data was observed for E2,

whereas the values for E1 in the diestrus stage were somewhat

under experimental data. Profiles for FSH and androgens are

shown for informative purpose, since they were constructed (using

forcing functions) to match the observed profiles.

In Vivo Experimental Results: EDC Study
Figure 5 illustrates the distribution of experimentally measured

ovarian E2 levels following EDC oral exposure. E2 levels were

significantly increased in atrazine-treated females, whereas no

statistically significant alteration of E2 was observed with bisphenol

A, methoxychlor, and vinclozolin treatment. As far as vinclozolin-

treated rats are concerned, one of those showed an elevated E2

ovarian concentration.

In vivo data extracted from the literature showed a significant

decrease of E2 in letrozole-treated rat ovaries, compared to control

[24].

Predictions for Ovarian Estradiol Concentrations in EDC-
treated Female Rats
In vitro results with atrazine, bisphenol A, methoxychlor

metabolite HPTE, and vinclozolin metabolite M2 showed a

modulation in mRNA levels after four hours of chemical exposure;

and only cells treated with HPTE and letrozole showed a

significant decrease in aromatase enzymatic activity (Table 6).

To further evaluate the predictive capacity of the model, we

simulated E2 concentrations in female rats exposed to atrazine,

bisphenol A, methoxychlor, vinclozolin, and letrozole for six

hours. After ‘‘in vivo’’ simulation with the mathematical model, we

compared E2 values predicted with those experimentally measured

(Figure 5). A two sample Kolmogorov-Smirnov test was performed

for each pair of data (experimental versus predicted data for each

treatment). It confirmed that the distributions of experimental data

and model predictions were similar for control, atrazine, bisphenol

A, methoxychlor, and letrozole treatments. Significantly different

distributions were found only for vinclozolin treatment (p = 0.021).

Discussion

The model presented here offers a detailed description of some

steroidogenic processes, focusing on what we felt to be the most

important ones for in vitro to in vivo extrapolation. The Bayesian

approach used for calibrating the model parameters permitted us

to take into account both uncertainty and variability in exper-

imental data, which is an asset for the relevance of the predictions.

The in vitro and in vivo data we generated allowed us to finely

calibrate and cross-validate the model, which was able to

quantitatively predict E2 ovarian concentration in physiological

conditions or after exposure to selected EDCs. This model, in spite

of its limitations, has many potential mechanistic or predictive

applications, as we discuss in the following.

Model Development
In the context of EDC toxicity assessment, some authors

developed systems biology models of the hypothalamic-pituitary-

gonadal (HPG) axis. Many of them are graphical systems models,

which allow researchers to visualize and think more clearly about

the impact of chemicals on the HPG axis (as reviewed by

[35,36,37]. They can also provide a framework for integration of

quantitative computational models, such as those of Breen et al.

[38], Watanabe et al. [39], and Li et al. [40]. Breen et al. [38]

proposed a steady-state model of fathead minnow ovarian

synthesis and release of T and E2; Watanabe et al.’s model [39]

simulates synthesis and feedback loops for T, 11-ketotestosterone,

E2, and vitellogenin plasma concentrations in male fathead

minnow; Li et al.’s model [40] simulate E2, T, and vitellogenin

plasma concentrations in female fathead minnow. Those models

focused on fish as a target species since endocrine disruption is well

documented in aquatic species [41]. However, the assessment of

EDC toxicity for humans warrants the development of mamma-

lian models. We chose to develop a computational model focusing

on the last steps of steroidogenesis in the rat ovary. This choice

seemed to be a good compromise between our purpose (make

quantitative in vivo predictions for a mammal based on in vitro
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measurements), and the data available to calibrate and cross-

validate our model.

Model Calibration
The calibration of the model was done on the basis of several

in vitro data sets, including our own. The diversity of protocols, in

particular for cell pre-treatment, led us to model inter-study

variability. Experiments reported in the literature were done to

compare treatments with control conditions rather than to develop

a computational model. For that reason, they lack endpoints such

as time-response curves at several FSH levels, precursor hormone

measurements, etc. In that sense, to develop a quantitative

computational model forces one to identify the kind of data

needed. Beyond answering the questions raised when developing

the model, such a refinement of experimental design may yield

new findings about cellular biology and toxicology in vitro. In any

case, the model was able to account for the differences between

studies and predicted the endpoints reasonably well. That can be

considered as the first part of our model validation process.

Model Evaluation with Cross-validation
Results from a baseline in vivo study, without EDCs, were used

to evaluate our model ability to predict some features of steroid

synthesis in normal physiological conditions. We used model

parameter values estimated by calibration of the in vitro data ‘‘as

is’’, without adjustment, to simulate E1 and E2 production by the

ovary in vivo. The results showed that the model was able to

accurately simulate ovarian E2 concentrations during normal

cycling in female rats. The results for E1 were less convincing, in

particular during diestrus. We did not go as far as to model the

ovarian steroid output, plasma concentrations, and the hypotha-

lamic-pituitary (HP) feedback. That was beyond the scope of our

work, but more importantly, modeling steroid output from the

ovaries and sex steroid plasma concentrations would have required

calibration of several more parameters and compromised the mere

feasibility of model cross-validation.

Model Predictions and Biological Insight in Baseline
Conditions
Updating the a priori parameter distributions into posteriors

gives us some insight into features of the rat sex steroid synthesis

network. For example, the preferred conversion of A into E1 by

aromatase (in spite of its conversion into T by Hsd17b1) seems due

to differences in Km values of androstedione for aromatase and

Hsd17b1, rather than to differences in Vmax values.

The flux analyses indicate that the preferential pathway for E2

synthesis involves E1 both in vitro and in vivo. They also point out

Figure 4. Flux analyses of in vitro and in vivo experiments. Graphs A and B represent the in vitro flux analysis of steroid hormones conversion
at 48 h after addition of 200 nM A into the medium, without or with FSH 20 ng/ml. Graphs C, D, and E illustrate the in vivo flux analysis of steroid
hormones conversion at several times of the estrus cycle (corresponding to diestrus, proestrus, and estrus stages). The aromatization reaction of A
into E1 is taken as the reference reaction for each condition. The flux values for that reference were 7.2961029 pmoles/min/cell in vitro without FSH,
8.7261028 pmoles/min/cell in vitro with FSH, 6.0961029 pmoles/min/cell in vivo in the diestrus stage, 6.1761029 pmoles/min/cell in the proestrus
stage, and 5.1061029 pmoles/min/cell in the estrus stage of the estrous cycle. Values for the other reactions in each condition are relative to the
corresponding reference. Arrow thicknesses are proportional to the flux absolute values.
doi:10.1371/journal.pone.0053891.g004
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the need to perform toxicity testing experiments under FSH-

controlled conditions.

Flux analyses show clear differences between in vitro and in vivo

conditions. For example, steroid inactivation reaction fluxes (T to

A and E2 to E1) are ranged from 1023 to 1026 pmoles/min/cell

in vitro, and ranged from 1024 to 10212 pmoles/min/cell in in vivo
conditions. Those differences can be explained by differences in

hormone inputs to the system. Fluxes depend on reaction

parameter values and hormone inputs applied. We showed that

keeping parameter values equal in vitro and in vivo, and simply

changing hormone inputs, is enough to explain flux differences

between in vitro and in vivo conditions.

Model Predictive Capacity Evaluation with Selected EDCs
To further evaluate the model predictive capacity, we simulated

in vivo steroid concentrations in the ovaries after chemical exposure

and compared them to original experimental results. Simulations

were performed by modifying aromatase Km or mRNA levels on

the basis of transcriptomic and enzymatic activity data obtained

in vitro for GCs. We limited our predictions to six hours post-

exposure, a period during which feedback regulation can be

assumed to be negligible.

Results show that our model predictive capacity was different

according to treatment. Model predictions were found to follow

the same distributions as the experimental data, except for

vinclozolin. However, Figure 5 shows nuances between treat-

ments. The model predicted reasonably well the early ovarian

response in E2 concentration for adult female rats exposed to

atrazine and letrozole. Atrazine and letrozole mechanisms of

action can explain why their effects were the most clearly seen

experimentally and the best predicted by the model after a few

hours. Indeed, we have previously shown [27] that elevated

aromatase mRNA expression (see also Table 6) and the

subsequent increase in aromatase catalytic activity in atrazine-

treated females explain a large part of the increase in estrogen

levels. As far as letrozole is concerned, it was designed to be a

specific aromatase inhibitor. The early ovarian responses in E2

concentration for adult female rats exposed to bisphenol A,

methoxychlor, or vinclozolin were less well predicted. The effects

of bisphenol A, HPTE, or vinclozolin M2 on aromatase or

Hsd17b1 did not explain the in vivo modulation of estrogen levels

following treatment, although they can significantly affect enzyme

mRNA levels in vitro. Instead we previously hypothesized that the

main mechanisms of action are: a disruption of the hypothalamic-

pituitary-adrenal axis for methoxychlor and vinclozolin; a

peripheral effect on conjugation/deconjugation metabolism pro-

cesses for bisphenol A [27]. The model, which doesn’t predict very

well variations of E2 concentrations following exposure to those

three chemicals, may confirm that the effects on granulosa

steroidogenesis are not predominant. Furthermore, vinclozolin

predictions were less precise, and showed higher variability. That

is actually an interesting feature: vinclozolin mechanism of action

is known to be more complex, acting notably by its anti-

androgenic metabolite M2 [4], and subject to variable amplifica-

Figure 5. Experimental data vs predictions of estradiol levels in control and EDC-treated female rats at the diestrus stage.
Experimental data are represented by points (n = 8 for control data, n = 4 for EDC-treated animals data). Statistical distributions of the model
predictions are represented by boxplots (showing the distribution quartiles). Control is for atrazine 200 mg/kg, bisphenol A 200 mg/kg, and
vinclozolin 100 mg/kg; control 2 is for letrozole 5 mg/kg. ATZ: atrazine; BPA: Bisphenol A; MXC: methoxychlor; VCZ: vinclozolin; LET: letrozole.
doi:10.1371/journal.pone.0053891.g005
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tion in the steroidogenesis pathway. The experimental data

themselves showed higher variability for vinclozolin, although

the small number of animals tested precludes strong conclusions.

Even if predictions for E2 levels compared well with exper-

imental values, the usefulness of the model could be improved.

First, it does not account for EDC effects on androgen precursors,

and can only predict effects for chemicals that act on the last steps

of steroidogenesis. An improvement would be to add other

pathways to the mathematical model, such as steroidogenic

processes in thecal cells. The model may also integrate effects on

steroid receptors, like the estrogen one, which is the target of

numerous chemicals [42]. The model also lacks numerous

feedbacks, in particular those mediated by the HP axis. Thereby,

for now, the model predictions for steroid ovarian concentrations

are of limited value for a complete analysis of endocrine

disruption. Rat HP axis feedback models previously described

[43,44] might be useful for coupling with ours.

Model Potential
Despite the limitations discussed above, the model perspectives

are multiple. All the reaction parameters can be modulated to

reflect changes observed in vitro, for example. That approach can

be very useful for investigating mixture and chronic effects. It can

also help formulate hypotheses and design experiments aimed at

understanding the mechanisms of endocrine toxicity, notably for

the effects which follow a non-monotonic dose-response, like those

of EDCs. A model integrating feedback regulations would permit

to describe further targets, such as the HPG axis, enzyme

inhibition, or local gene expression effects.

Observations of alterations in ovarian functions at molecular

and biochemical levels are useful for regulatory decision-making

only if these changes can be translated into effects at higher

biological levels of organization. The model is able to make

quantitative predictions about steroid secretion based on data on

the impact of chemicals on the last steps of ovarian steroidogenesis.

Sex steroid concentration changes, even of low scale, account for a

large part of effects in reproductive toxicology, but it is not

sufficient. Integrated models, predicting multiple endpoints

relevant for reproductive toxicology assessment, have been

developed in the fathead minnow [39,40]. Since links between

sex steroid concentration changes and reproductive toxicity are

not clear in mammals, some work still has to be done.

Conclusions
The model developed was able to predict a very sensitive and

integrative reproductive endpoint: ovarian sex steroid levels, from

in vitro data. The results of flux analyses and predictions of EDC-

treated females show that the model not only fits the data

empirically, but also captures major features of the GC

steroidogenesis network. We carefully limited the scope of our

model to ovarian secretion in order to be able to cross-validate it

with the data available. In some cases, investigating effects simply

on gonads can be a powerful tool for understanding whole-body

hormone disruption, in which case the model might be a valuable

tool for toxicity assessment. While the predictive capacity of this

mathematical model is still limited, it already has potential

applications for improved evaluation of endocrine disruption

following chemical exposure, in particular for low levels and

mixtures of pollutants.
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