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Abstract 9 

A novel climate downscaling methodology that attempts to correct climate simulation biases 10 

is proposed. By combining an advanced statistical bias correction method with a dynamical 11 

downscaling it constitutes a hybrid technique that yields nearly unbiased, high-resolution, 12 

physically consistent, three-dimensional fields that can be used for climate impact studies. 13 

The method is based on a prior statistical distribution correction of large-scale global climate 14 

model (GCM) 3-dimensional output fields to be taken as boundary forcing of a dynamical 15 

regional climate model (RCM). GCM fields are corrected using meteorological reanalyses. 16 

We evaluate this methodology over a decadal experiment. The improvement in terms of 17 

spatial and temporal variability is discussed against observations for a past period. The biases 18 

of the downscaled fields are much lower using this hybrid technique, up to a factor 4 for the 19 

mean temperature bias compared to the dynamical downscaling alone without prior bias 20 

correction. Precipitation biases are subsequently improved hence offering optimistic 21 

perspectives for climate impact studies. 22 

1 Introduction 23 

Global Climate Models (GCM) improved notably in their representation of the climate system 24 

over the past couple of decades (IPCC, 2007). Their design is focused on the global scale, and 25 
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their main scope consists in capturing the sensitivity of the global climate to changes in 26 

external natural and anthropogenic forcing. The fairly low resolution of such models does not 27 

allow for the detailed simulation of local atmospheric processes. In addition, the main focus 28 

being the global energy balance, coupled models may exhibit significant regional biases in 29 

important variables such as temperature or precipitation. 30 

However, climate risk assessment requires horizontal resolution of the order of half a degree 31 

or below and unbiased projections, especially when it comes to meteorological extremes. 32 

More generally such information is required in order to design adaptation measures for which 33 

impact models (e.g., with regards to food safety, energy, water, air pollution), tuned on 34 

current climate observations, need to be applied to future climate projections. Such a 35 

requirement cannot be met by current raw GCM outputs. 36 

The transformation of global model outputs into high spatial resolution products is referred to 37 

as climate downscaling. It can be divided into two broad types of approaches: statistical or 38 

dynamical downscaling. Statistical downscaling builds upon a prior knowledge of statistical 39 

relationships between the GCM and monitoring data. Statistical models representing those 40 

relationships are then applied over future time periods, without involving any additional 41 

physical modelling in addition to the GCM (Wilks and Wilby, 1999, Vrac et al., 2007, 42 

Semenov et al., 1998, Maraun et al., 2010). To downscale a global model in a dynamical way, 43 

one implements a Regional Climate Model (RCM) forced by the global fields at the 44 

boundaries (Giorgi et al., 2009, Laprise, 2008). Similarly to the GCM, the RCM provides a 45 

comprehensive physically-consistent representation of the climate system. However, GCM 46 

biases are conveyed to the RCM, and the latter can only compensate, or enhance, these flaws. 47 

In order to cope with these deficiencies, bias correction methods are often applied to RCM 48 

outputs prior to the implementation of an impact model (Christensen et al., 2008, Oettli et al., 49 

2011). However this methodology suffers from several caveats. On the one hand, the fields 50 
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are generally corrected without considering spatial, temporal or inter-variable correlation. On 51 

the other hand, the bias correction requires high-resolution observations, generally not 52 

available on a grid, but rather at scattered locations. These problems could be at least partly 53 

avoided if most of the GCM biases were removed before the dynamical downscaling, an 54 

approach that we investigate in this article. A few studies investigated the possibility to 55 

correct large scale forcing prior to applying a mesoscale model (Rasmussen et al., 2012, Schär 56 

et al., 1996) but none of them achieved that with a downscaling technique that matches the 57 

whole range of the distribution to meteorological reanalyses.  58 

We propose here an innovative downscaling methodology that combines both dynamical and 59 

statistical approaches, but in a different order compared to what is usually done. In a nutshell, 60 

our hybrid approach consists in applying a statistical correction of the GCM fields with 61 

respect to atmospheric reanalyses prior to performing a dynamical downscaling of these 62 

corrected fields. As such, this approach constitutes a hybrid climate downscaling technique 63 

building upon upstream statistical correction and downstream physical modelling. 64 

Like any probabilistic downscaling technique, the upstream statistical correction may alter the 65 

integrity of the forcing fields by matching it to reanalyses. The main strength of our hybrid 66 

approach lies in the implementation of a mesoscale model after the probabilistic downscaling 67 

that guarantees the physical consistency of the resulting fields and hence  constitutes an 68 

essential advantage for climate impact studies (Parry et al., 2007). Statistical downscaling that 69 

targets only a couple of surface variables has long been considered satisfactory for most 70 

climate impact studies (such as food safety or hydrological extremes). However other 71 

applications such as air quality modelling require physically-consistent 3D atmospheric fields. 72 

That is why regional air quality projection studies rely on raw RCM outputs, and our 73 

technique offers a unique perspective to derive unbiased, balanced, 3D forcing fields. 74 
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In section 2, the statistical and physical downscaling methodologies are presented. The 75 

evaluation results are given in section 3 on a test case for present day simulation. The 76 

application to future projections is left for upcoming studies.  77 

2 Methodology 78 

2.1 Large scale climate model 79 

The large scale climate model that we use to demonstrate the efficiency of our hybrid 80 

statistical and dynamical technique is the coupled climate model IPSLcm (Institut Pierre 81 

Simon Laplace Coupled Model) GCM (Marti et al., 2010).  82 

The simulations used here are obtained with the “low resolution” versions prepared for the 83 

CMIP5 (Climate Model Intercomparison Project) stream of the Intergovernmental Panel on 84 

Climate Change (IPCC). The meteorological fields are computed on a global 96x96 points 85 

grid with a horizontal resolution of 3.75 x 1.875 degrees and 39 vertical levels.  86 

2.2 Statistical downscaling 87 

The probabilistic downscaling methodology used here is the CDF-t (Cumulative Distribution 88 

Function transform) of (Michelangeli et al., 2009), based on a variant of the “quantile-89 

matching” technique (Déqué, 2007). Quantile-matching consists in associating to a modelled 90 

value, the value in a control distribution (e.g. observations) that has the same probability. In 91 

other words, from a quantile in the CDF of the simulations, the corresponding quantile in the 92 

CDF of the control data (e.g. observations) is determined. By scaling the quantile-quantile 93 

relationship, the correction changes the shape of the distribution so that the events whose 94 

frequency (or probability) is systematically biased in the model are better captured.  95 

While classical applications of quantile-matching consider that the CDF of the simulations is 96 

stationary in time (Maraun et al., 2010, Wilks and Wilby, 1999), the scope of CDF-t consists 97 

in expanding this technique for the case where the CDF of the simulations for the future has 98 

changed. This is done, first, by estimating the CDF of the corrected variable for the future 99 
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time period of interest (Michelangeli et al., 2009). Then, projections are obtained through a 100 

quantile-quantile technique between future uncorrected and corrected CDFs (Vrac et al., 101 

2012). The methodology implemented here thus applies for future projections even though we 102 

decided to limit the scope of the present paper to historical periods in order to discuss its 103 

validation. 104 

This CDF-t technique has been used successfully in the past to downscale climate models 105 

(Vrac et al., 2012, Flaounas et al., 2011, Michelangeli et al., 2009) but one should note the 106 

two major limitations of the approach. First, only the bulk CDF is matched, the temporal 107 

frequency and spatial patterns are not altered so that any flaw in the persistence or in the 108 

spatial distribution of the weather patterns is not improved. In addition, the major underlying 109 

hypothesis of the CDF-t downscaling is that, although the CDFs are not supposed to be 110 

stationary, the transformation T from model to observed variable CDFs is supposed to be 111 

valid under changed climate conditions, i.e. is supposed stationary in time. We emphasize that 112 

even though CDF-t is designed to be applied to future climate simulations, we decided to 113 

apply this technique in the present paper to a current period for validation purposes.  114 

2.3 Dynamical downscaling 115 

We use the Weather Research and Forecasting (Skamarock et al., 2008) mesoscale model to 116 

downscale the IPSLcm fields in a dynamical way. The spatial resolution is 50km and the 117 

domain covers the whole of Europe with 119x116 grid points. The setup is the same as that of 118 

(Menut et al., 2012) who present a detailed evaluation of the performance of the 119 

IPSLcm/WRF regional climate modelling suite. However no nudging was applied in the 120 

present case in order to evaluate the full effect of prior correction on dynamical downscaling. 121 

2.4 Experimental design 122 

We perform a CDF-t based correction of the large-scale input fields produced with the 123 

IPSLcm model so that corrected fields will be used for the dynamical downscaling. 124 
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Distributions are matched with those of reanalysed fields of the ERA-interim reanalysis. 125 

Unlike existing applications of CDF-t that perform a scaling of large-scale model outputs to 126 

point surface observations (Michelangeli et al., 2009) or gridded surface analyses (Flaounas et 127 

al., 2011) we scale several variables of the model to the whole 3D fields of the reanalysis.  128 

The correction is achieved at each GCM grid-point independently, where reanalysed fields 129 

were previously interpolated. There was no attempt to maintain the spatial consistency of the 130 

fields considering that (1) matched fields are coarse enough to avoid the introduction of high-131 

frequency variability and (2) potential spurious features would vanish after having used the 132 

mesoscale model to downscale the corrected fields. For each variable and at each grid point, 133 

we extract the time series for the whole period to produce the two distributions (GCM and 134 

reanalysis) that will be matched. To account for seasonality, all training distributions are taken 135 

on a monthly basis. For 3D and surface temperature, the correction is performed 136 

independently for the 4 daily time steps to account for the diurnal cycle. Since we match the 137 

bulk distribution of the time series, there is no matching of sequences of event, on the 138 

contrary we maintain the temporal consistency of the input field. 139 

The correction is done for 3D zonal and meridional wind, 3D relative humidity, and 3D and 140 

surface (skin) temperature. Surface pressure and geopotential height are not matched in order 141 

to maintain flow consistency and quasi-geostrophy at the boundaries, but they are indirectly 142 

modified by the matching of the 3D temperature field. The hydrostatic balance of the 143 

corrected input field is recomputed before launching the mesoscale model in order to ensure 144 

physical consistency along the columns; by proceeding to an upward integration of the 145 

hydrostatic balance, corrections applied to the temperature field are conveyed to the 146 

geopotential height.  147 

The evaluation experiment consists of simulations over a 11-year period for the downscaling. 148 

The first year is considered as a spin-up period and it is thus discarded from the following 149 
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analysis. The last decade of the 20th century is chosen because of the full overlap between 150 

ERA-interim and IPCC historical simulations. This time period also allows comparing the 151 

efficiency of the methodology against observations. Two simulations are carried out, starting 152 

on 1 January 1989. The first one is done without applying the GCM correction prior to 153 

dynamical downscaling, while the second is done with application of the prior CDF-t 154 

approach. The two simulations are then compared to E-OBS data (Haylock et al., 2008) over 155 

the same time period. Since the focus of this study is not to validate the performance of the 156 

CFD-t itself directly applied to the GCM fields (as it was demonstrated before (Flaounas et 157 

al., 2011, Michelangeli et al., 2009, Vrac et al., 2012)), but the impact of CDF-t on the 158 

dynamical regional climate downscaling, it was unnecessary to implement a ‘leave-one-out’ 159 

testing approach. The duration of the simulations (10 years) is too short to address the benefits 160 

for meteorological extremes; this aspect is left for future work while we focus here on average 161 

biases. 162 

3 Results 163 

The evaluation of the results is performed against the European Climate Gridded dataset (E-164 

OBS) temperature and precipitation observations. 165 

3.1 Surface temperature 166 

The bias of temperature averaged over the 10-year time period is given in Figure 1 for the 167 

reanalysis (ERA-i), the large-scale climate model (IPSLcm) and its statistically corrected 168 

version, the dynamically downscaled climate model (IPSLcm/WRF) and the hybrid 169 

statistical/dynamical downscaling (IPSLcm/CDF-t/WRF). For all the models the temperature 170 

is interpolated at 950hPa while the observations are provided at 2-m altitude. The 171 

discrepancies between E-OBS and ERA-i are confined to the outskirts of the domain where 172 

the gap filling procedure used in E-OBS has uncertainties as a result of the scarcity of the 173 

monitoring network. In addition, important differences are found over mountainous areas due 174 
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to lack of resolution and methodological differences. On average, the difference between 175 

ERA-i and the observations is -1.41K (standard deviation =2.03) over the Western part of 176 

the domain (5W, 15E, 40N, 55N). Raw GCM temperatures exhibit a strong negative bias 177 

(―4.78K, =0.6), except over mountainous areas where the positive biases result from an 178 

artefact of the smooth orography. This strong negative bias of the low resolution version of 179 

the IPSLcm model was discussed before (Hourdin et al., 2012) and was improved in a more 180 

recent version of the model including a higher resolution (Cattiaux et al., 2012). This feature 181 

constitutes a somewhat good test case for the hybrid downscaling methodology presented 182 

here. The statistical correction is efficient at reducing the temperature bias of IPSLcm, the 183 

average bias of the corrected GCM is -1.36 (=2.07) and its pattern resembles that of ERA-i. 184 

The negative bias of IPSLcm is amplified in the raw regional climate model simulations 185 

(―5.06K, =1.49), as was observed by (Menut et al., 2012). The dynamical downscaling 186 

does not constrain the distribution in any ways, and it appears that a negative feedback occurs 187 

here as the RCM increases the negative biases of forcing fields. On the contrary, the situation 188 

is better for the hybrid downscaling, the average bias is limited to -2.33K (=1.35). The 189 

mesoscale still tends to cool down the GCM, and the average bias is larger than for the 190 

corrected version of IPSLcm since the compensation that occurred over high elevation terrain 191 

vanishes. Despite the reduction of the mean bias, it still exhibits a regional pattern with 192 

negative values in Western and Northern areas and positive values in Mediterranean areas. 193 

The overall negative bias is primarily found for low temperatures during winter and to a lesser 194 

extent for warm temperatures, even though a bias remains over the lowermost part of the 195 

distribution.  196 

Seasonality has a strong impact, the mesoscale model tends to be warmer than the large scale 197 

forcing in winter (0.5 and 0.6K average bias for IPSLcm  and IPSLcm/CDF-t, respectively) 198 

and colder in summer (-0.3 and -1.67K average bias for  IPSLcm  and IPSLcm/CDF-t, 199 
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respectively). The upstream statistical correction influences indirectly the atmospheric flow. 200 

This feature is confirmed with average sea-level pressure maps (not shown) that exhibit larger 201 

differences in winter than in summer, explaining this uneven influence on temperature of the 202 

bias correction over the year. 203 

3.2 Precipitation 204 

Beyond its relevance for climate impact studies, precipitation is an interesting variable to 205 

evaluate our methodology since, unlike temperature, this variable was not directly corrected 206 

by the prior statistical CDF-t method. The absolute differences between modelled and 207 

observed precipitations are provided on Figure 2.  208 

The GCM exhibits an overestimation of precipitations throughout the domain. Only West-209 

facing coastal areas have a deficit, presumably because of the too coarse resolution that is not 210 

able to capture the precipitation local maxima over the coastlines. The overestimation is less 211 

pronounced over mountainous areas because of a compensation of errors.  212 

The dynamical downscaling of the raw GCM outputs yields an even stronger overestimation 213 

of the precipitation because of a negative feedback related to the low temperature bias. The 214 

deficit over coastlines and mountains is compensated by the higher resolution of the model. 215 

It is only with the hybrid downscaling that the results are significantly improved. The model 216 

still exhibits an overestimation of precipitation but, over low-lying area of Western Europe, 217 

the bias is decreased by a factor of two. An excess is found over the Alps. Precipitation 218 

deficits are found around the Mediterranean, the spatial patterns of these deficits do not 219 

appear highly correlated to coastlines. It may thus be attributable to other uncorrected 220 

deficiencies such as weather regime frequencies rather than resolution issues. 221 

The distribution of daily precipitation shows that the hybrid downscaling constitutes an 222 

improvement over the whole range of the distribution. Nevertheless, all the simulations still 223 

exhibit an overestimation of low precipitations and an underestimation of higher quantiles. 224 
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4 Conclusion 225 

We propose an innovative climate downscaling methodology that combines state-of-the-art 226 

statistical and dynamical approaches. We apply a statistical correction to large-scale fields of 227 

a Global Climate Model (GCM) prior to a regional simulation. The statistical correction 228 

makes use of the Cumulative Distribution Function transformation (CDF-t) designed by 229 

(Michelangeli et al., 2009). The GCM field distributions are matched to those of reanalysed 230 

fields in order to apply a correction over the whole 3D domain for several variables. The 231 

corrected fields are then provided to a dynamical Regional Climate Model (RCM), so that we 232 

can produce bias-corrected, yet physically consistent, 3D fields at higher spatial resolution. 233 

An application to present-day climate shows that the statistical upstream correction leads to a 234 

reduction of the surface temperature bias of a factor four in the regional climate simulation. 235 

This improvement yields, in turn, a lower overestimation of precipitations. 236 

The CDF-t upstream correction does not address yet spatial and temporal variability (climate 237 

modes, persistence and weather regimes), the technique remains sensitive to the choice of 238 

variables included in the correction and the location of the domain since the forcing is applied 239 

at the boundaries. The methodology carries some error compensation mechanisms whose 240 

effect is minimised thanks to the implementation of a dynamical downscaling in the lee of the 241 

statistical correction.  242 

Nevertheless, considering the magnitude of the improvement in terms of mean bias we 243 

conclude that this innovative hybrid statistical/dynamical climate downscaling offers 244 

promising perspectives for climate impact studies requiring unbiased, balanced, high-245 

resolution 3D fields.  246 
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 313 

Figure 1 : Difference between the mean modelled 950hPa temperature and observed (E-OBS) 314 

2-m temperature (K) over the 1990-1999 decade for ERA-interim, the GCM IPSLcm as well 315 

as its corrected version and the RCM WRF driven by raw IPSLcm fields and by downscaled 316 

IPSL fields corrected with the CDF-t technique. The green-shaded areas in the WRF field are 317 

unavailable because located below the 950hPa level in the hybrid coordinates. 318 

319 
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 320 

 321 

Figure 2 : Same as Figure 1 for the precipitations (mm/day) except that only the results of the 322 

climate models are given and the colour scale is reversed. 323 


