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Abstract 

The European regulation of chemicals named REACH implies the assessment of a large 
number of substances based on their hazardous properties. However, the complete 
characterization of physico-chemical, toxicological and eco-toxicological properties by 
experimental means is incompatible with the imposed calendar of REACH. Hence, there is a 
real need in evaluating the capabilities of alternative methods such as Quantitative Structure-
Property Relationship (QSPR) models, notably for physico-chemical properties. 
In the present work, the molecular structures of 50 nitroaliphatic compounds were correlated 
with their impact sensitivities (h50%) using such predictive models. More than 400 molecular 
descriptors (constitutional, topological, geometrical, quantum chemical) were calculated and 
linear and multi-linear regressions were performed to find accurate quantitative relationships 
with experimental impact sensitivities. Considering different sets of descriptors, four 
predictive models were obtained and two of them were selected for their predictive reliability. 
To our knowledge, these QSPR models for the impact sensitivity of nitroaliphatic compounds 
are the first ones being rigorously validated (both internally and externally) with defined 
applicability domains. They hence follow all OECD principles for regulatory acceptability of 
QSPRs, allowing possible application in REACH.  
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1. Introduction 
The European Union regulation REACH (Registration, Evaluation, Authorization and 
Restriction of Chemicals) [1], entered into its registration phase in December 2008. It requires 
the evaluation of physico-chemical, toxicological and eco-toxicological properties for a 
tremendous number of chemicals. Indeed, more than 143 000 existing substances have been 
pre-registered by 65 000 companies and are expected to be registered before 2018. Moreover, 
all new substances require an early examination to identify possible hazards. Taking into 
account all the constraints imposed by the regulation, the complete experimental 
characterization of all substances is not realistic (for reasons of time, costs or ethics in case of 
tests on animals). Thus, the development of alternative (predictive) methods to evaluate the 
properties of chemicals was recommended in the framework of REACH. 
In this context, we developed and validated theoretical models, based on robust computational 
approaches, which represent a viable alternative to more conventional experiments. In 
particular, we focused on Quantitative Structure-Property Relationship (QSPR) models, which 
have been clearly identified in REACH legislation. Besides, models have already been 
developed for both environmental and physico-chemical properties in the scope of this 
regulation [2-4]. 
To support this development, OECD drawn up the 5 following principles for the validation of 
QSPR models [5]: 

1. A defined endpoint (including experimental protocol);  
2. An unambiguous algorithm;  
3. A defined domain of applicability;  
4. Appropriate measures of goodness-of-fit, robustness and predictive power;  
5. A mechanistic interpretation, when it’s possible. 

Following these criteria, four QSPR models were developed in the present study for the 
impact sensitivity of nitroaliphatic compounds. This property, characterizing the tendency of a 
material to react under the effect of a mechanical impact, is one of the most important to 
classify explosible substances according to the European regulation related to the 
Classification, Labelling and Packaging of substances and mixtures (CLP) [6].  
Many QSPR models have been already developed for this property and, some of them, for 
nitroaliphatic compounds. The first one was published by Kamlet [7] in 1976 for trinitro-
aliphatic compounds and consisted in a simple linear equation based on the oxygen balance 
that characterizes the oxydability of explosives. Later, Mullay developed another linear model 
using the molecular electronegativity [8,9]. More recently, quantum chemical descriptors have 
been introduced. For example, Politzer [10,11], Rice [12] and Badders [13] used the midpoint 
potential that characterizes the electrostatic potential created by the charges of the C and N 
atoms at the mid-point of C-NO2 bonds and Zang [14] exhibited correlations with the nitro 
group charge. In parallel, Keshavarz [15-18] developed multivariate models using 
constitutional parameters, such as the ratio of the number of particular molecular fragments 
on the molecular weight. Lai [19] proposed a new model, based on the ones of Keshavarz and 
Kamlet that included an additional term based on the presence and the number of specific 
fragments. All these models were characterized by good determination coefficients (R²) but 
they were not validated (either with respect to an internal or external set of compounds) and 
their respective applicability domains were not defined. Few models using neural 
networks [20-21] with different sets of descriptors were also developed for nitro compounds.  
To our knowledge, the more predictive existing models for the impact sensitivities of 
nitroaliphatic compounds have been developed by Wang [22] using a multi-linear regression 
(R²=0.80, Q²LOO=0.51 and R²EXT=0.93) and partial least square (PLS - R²=0.78, Q²LOO=0.48 
and R²EXT=0.97) based on a series of electrotopological descriptors. As indicated, the 
determination coefficients for the molecules of the validation set were high but a failure in 
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robustness can be noticed probably due to the large number of descriptors (13) in models. 
Moreover, no applicability domains were defined and analyzed. 
Consequently, none of these models fits all OECD standards and cannot be used, therefore, 
within REACH regulation. In order to fill this gap, this paper aimed to develop fully validated 
QSPR models to predict the impact sensitivity of 50 nitroaliphatic compounds respecting all 
OECD principles including the determination of their applicability domains. About 
400 descriptors were calculated, including quantum chemical ones based on density 
functional theory (DFT) calculations. These latter were performed to have a better chemical 
interpretation of the developed models as already demonstrated in previous works for 
nitroaromatic compounds [23-25].  
 
At first, linear regressions were performed and a first validated model was proposed. Then 
several multi-linear regressions (MLR) were developed to reach better performances using 
different sets of descriptors. The first one considered only constitutional descriptors that only 
need the 2D structures of molecules. The second one was extended to all types of descriptors 
and the last one focused only on quantum chemical descriptors that could provide better 
chemical insights. Also all models were validated by a series of internal and external 
validation methods. To our knowledge, they represent the first models dedicated to energetic 
properties proposing a complete validation process including cross validations to characterize 
robustness, Y-randomization techniques to avoid chance correlations and external validation 
to estimate predictive power of models and taking into account the applicability domain. 
 
2. Computational details 
2.1. Experimental dataset 
The considered dataset contained 50 experimental impact sensitivity values of nitroaliphatic 
compounds (see Table S1 in supporting information for structures) that have been extracted 
from a single reference [26] to ensure that they were obtained using a single protocol (by drop 
weight impact tests in the work of Storm [26]), as required by the first OECD point. The 
impact sensitivity, noted h50%, is a quantity which measures (in centimeters) the height from 
which the fall of a weight of a given mass on a sample causes a reaction with a 50% 
probability level. Substances with low h50% values are the most sensitive since they need less 
energy to react. This impact test requires relatively small quantities of material (ac700 mg) 
but does not exhibit good resolution or reproducibility. It is then used to separate qualitatively 
explosives into classes of similar handling hazards [7]. Also, the test of sensitivity to impact is 
a regulatory test within the frameworks of CLP [6] or Transport of Dangerous Goods (TDG) 
[27]. To allow an external validation of models, the data set was then divided into a training 
set, containing two thirds of the molecules of the data set and a validation set constituted by 
the remaining molecules. This splitting was carried out to guarantee similar distributions of 
the h50% values in both sets [28]. In practice, compounds were classified by increasing order 
of h50% and one molecule out of three molecules was selected to constitute the validation set. 
This partition enables both sets to be of sufficient size with similar distributions to allow a 
robust development and validation of models. Moreover, no bias in representativeness was 
identified when inspecting the chemical structures of both sets. The so defined training set of 
34 compounds was used for the development and the internal validation of models, while the 
validation set of 16 compounds was considered for external validation to evaluate their 
predictive power. The repartition of data between training and validation sets as well as the 
corresponding experimental values are reported in Table 1. 
 
 
2.2. Molecular structures calculation  
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A preliminary conformation analysis was carried out with Scigress software [29] using the 
Conflex algorithm [30,31] and the MM3 force field [32]. This analysis generated 
automatically all possible conformations of molecules and their energy. The most stable 
conformer (the one with the smaller energy) of each molecule was used as molecular 
structure. Then it was optimizated with Gaussian03 software [33] using DFT calculations with 
the PBE0 [34] functional and the 6-31+G(d,p) basis set. Vibrational frequencies were 
computed at same level of calculation to ensure that all final stable conformations exhibited 
no imaginary frequency. 
 
2.3. Molecular descriptors calculation 
Each molecular structure was then characterized by a series of descriptors. According to 
Todeschini and Consonni [35], the “molecular descriptor is the final result of a logic and 
mathematical procedure which transforms chemical information encoded within a symbolic 
representation of a molecule into a useful number or the result of some standardized 
experiment”. Different kinds of calculated descriptors can be then considered [36]:  

•  Constitutional descriptors, such as the number of specific atoms, functional 
groups or bonds; 

•  Topological descriptors, which are calculated from atomic connectivity in the 
molecule and give information about size, composition and branching degree (e.g. 
Weiner, Balaban or Randic indices); 

•  Geometric descriptors, related to the 3D-structure, such as distances, angles, 
molecular volume or surface area; 

•  Quantum chemical descriptors, like atomic charges, electronic and binding 
information, molecular orbital energies or reactivity indices. 

Most of the descriptors considered in the present paper were calculated using the CodessaPro 
software [37]. Others were extracted from examination of chemical structures or from the 
works of Kamlet [7], Mullay [9], Badders [13] and Keshavarz [17]: oxygen balance (OB100), 
molecular electronegativity (χmol), the ratio of the number of atoms (C, H, O or N) on 
molecular weight (nC/mw, nH/mw, nO/mw, nN/mw) and the number of specific fragments (as 
nCNC). Moreover, descriptors issuing from conceptual DFT [38,39], already successfully used 
in QSPR models for the prediction of the heat of decomposition of nitroaromatic 
compounds [21,23-25], were considered. More details about descriptors are available in [37] 
or in supporting information (Tables S2 and S3). 
 
2.4. Model building 
All models were developed on the training set using the Best Multi Linear Regression 
(BMLR) approach [36] as implemented in CodessaPro program [37]. This approach gave the 
most correlated model at each rank (i.e. for each number of descriptors) and the final model 
was chosen as the best compromise between correlation and number of descriptors as 
explained in previous works [24,28].  
2.5. Performances of models 
To evaluate the performances of models, a series of internal and external validations were 
computed. The goodness of fit was measured by the root mean square error (RMSE) between 
predicted and experimental values:  
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With iŷ  the calculated value of the property, iy  the experimental one, y  the mean of 
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Correlation was also characterized through the determination coefficient (R²): 
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Moreover, a Student’s t-test validation at a confidence level of 95% was computed to confirm 
the pertinence of each descriptor. The descriptors with the highest t-test values are the most 
relevant in the model. 
 
The Q² coefficient issued from both leave-one-out (LOO) and leave-many-out (LMO) cross 
validations measured the robustness of the model, i.e. the dependence of the fitting on 
particular molecules or groups of molecules of the training set.  
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With iiy /ˆ  the predicted value of the ith molecule from the model refitted without using this  ith 

molecule.  
Robust models are expected to present a low difference between Q² and R² coefficients. It has 
to be noticed that cross validation does not measure the predictivity of models because the set 
of molecules excluded at each step of the cross validation procedure and then used to 
calculate Q2 has already been used for the building of the model [40,41]. 
 
To ensure that models did not correspond to chance correlations, a Y-scrambling test was 
realized. Random permutations of experimental property values were performed (500 
iterations) and new models were recalculated [42,43]. To evaluate the impact of 
randomization, average and standard deviation in R²random coefficients were calculated (R2

YS 
and SDYS). Low R2

YS values are expected to avoid chance correlation. To go further, 
Rücker proposed that the difference between R² of the original model and R2YS should be 
roughly ≥ 2.3 SDYS to ensure a statistical significance at a 1% level and ≥ 3 SDYS at a 0.1% 
level [43].  

 
The predictive power of models was measured on the validation set based on the R²EXT 
coefficient, which measures the correlation between predicted and experimental values for the 
molecules of the validation set and the root mean standard error of predictions (RMSEEXT). 
Moreover, the Q²EXT coefficient (Eq. 4) was calculated as proposed by Tropsha [44] and the 
OECD guidance document [5].  
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With iŷ  the predicted value of the property, iy  the experimental value of the property, TRy  

the mean experimental value in the training set and next the number of molecules in the 
validation set. 
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A QSPR model only offers reliable predictions for compounds similar to those belonging to 
the training data set. In this study, the applicability domain (AD) [45,46], required by the 
3rd OECD point, was determined based on the descriptors included in the model. Euclidean 
distance method available in Ambit discovery software [47] was used with a 95% threshold, 
i.e. the domain was calculated to contain 95% of the molecules of the training set. Then, the 
predictivity inside the applicability domain was also calculated based only on the molecules 
of the validation set that belonged to this domain (R²IN, RMSEIN and Q2

IN). 
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3. Results 
3.1. Linear regressions 
Firstly, linear regressions were performed on the entire data set to evaluate the global 
performances of descriptors not only with h50% but also with logh50% as commonly proposed 
in previous existing models [7,9,13,15-17]. The best correlations were obtained for logh50%. 
Indeed, the highest correlation considering h50% reached R2=0.57 (obtained with the relative 
number of aromatic bonds) whereas the ten most correlated descriptors, as shown in Table 2, 
ranged from R2=0.73 to 0.78 with logh50%.  
To illustrate this point, oxygen balance (OB100), presenting one of the most correlated 
descriptors with both h50% and logh50% was represented as function of the experimental impact 
sensitivity in Figure 1. This descriptor was defined by Kamlet [7] as 
OB100= 100 (2nO-nH-2nC-2nCOO)/mw  (5) 
and used as a criterion to evaluate explosibility capacity of CHNO compounds [27]. It is 
similar to the oxygen balance (OB) defined in the UN regulation related to the transport of 
dangerous goods (TDG) as a criterion for explosive compounds [27].  
From the plot of Figure 1, it appears that the logarithmic fitting is significantly better than the 
linear one (R²=0.78 and R²=0.51, respectively). The same behaviour was noticed for almost 
all the others descriptors when used alone. Therefore, only logh50% was considered in the 
following of the study. 
Moreover, the pertinence of including external descriptors that were not calculated using 
CodessaPro software was confirmed as they represent four out of the ten most correlated 
descriptors: OB100, nC/mw, OB and nH/mw (see Table 2). Also, some quantum descriptors 
stood out: the ratio of the zero point vibrational energy on the number of atoms and the ratio 
of the number of occupied electronic levels on the number of atoms. 
 
Finally, regarding the high correlation of OB100 with logh50%, a first linear model (see Table 
S4).was developed by considering a complete validation method (including external 
validation): 
logh50%=1.714 – 0.205 OB100 (6) 
It has to be noticed that this model is similar to the equation proposed by Kamlet [7] even if 
this last was only developed from C(NO2)3 compounds: 
logh50%=1.753 – 0.233 OB100 (7) 
If Kamlet’s equation presented better performance in terms of correlation than this new model 
(R²=0.94 and R²=0.72, respectively), it was not validated, in particular on an external set of 
molecules. On the contrary, the new model (Eq. 6) was developed according to all OECD 
validation principles. It presented good robustness (Q²LOO=0.69, Q²10CV=0.69, Q²5CV=0.70) 
and it did not result from chance correlation as checked by Y-scrambling (R²YS=0.03, 
SDYS=0.04). Concerning predictivity, the model presented particularly high R²EXT value (0.92) 
which is surprisingly largely superior to the R2 one. Such behavior could be related to the 
small size of the validation set. Nevertheless, the distribution of property values was quite 
homogeneous in the validation set as shown on Figure 2. Another explanation could be a 
structural bias between the training and the validation sets. To explore this hypothesis, a series 
of 10 random partitions has been set up and models were developed for each of them (Table 
S5). Seven out of the ten randomized models presented same behaviour (R²EXT>R2). The 
average values of R²EXT remained higher than R2 ones but none of the randomized partition 
allowed to reach R²EXT=0.92 of Equation 6. Moreover, when inspecting the chemical 
structures of validation sets for each 10 randomized partition, no particular molecule was 
included in the three partitions presenting R²EXT>R2 (partitions 1,5,7) and absent in the other 
seven ones. So, no structural feature was identified to explain this behaviour. Furthermore, 
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high standard deviations were observed for both R2
EXT (0.08) and R2 (0.04) which can be 

explained from high experimental uncertainties. 
Nevertheless, this linear model presented already quite good performances and could be used 
for first evaluation of the property from a single constitutional descriptor which can be easily 
calculated (i.e. without any software). In a next step, multi-linear regressions were computed 
to achieve models that could improve prediction. 
 
3.2. Multi-linear regressions 
Three models with performances summarized in Table 3 were developed with the BMLR 
method. The first one was built only from constitutional descriptors which do not require the 
3D molecular structures (i.e. without any quantum chemical calculations). Then, all 
descriptors (about 400) were taken into account for determining a second model, while a third 
one was defined on the basis of only quantum descriptors. 
 

Model with constitutional descriptors 
From 66 constitutional descriptors, a three-parameter model (see Table S6) was found to be 
the best compromise between correlation and number of descriptors among the six equations 
sorted out by the BMLR method: 
logh50% = -2.53 nN/natom + 0.07 nsingle – 0.25 nNO2 + 1.94 (8) 
with nN/natom the relative number of N atoms (t-test= -2.2), nsingle the number of single bonds 
(t-test=7.9) and nNO2 the number of NO2 groups (t-test=-8.4). From a chemical point of view, 
the occurrence of NO2 can be explained because the primary cleavage of the C-NO2 bond is 
known to be the main mechanism of decomposition [48-51]. The relative number of N atoms 
and the number of single bonds are not so straightforwardly interpretable.  
The predicted impact sensitivity using equation 8 as function of experimental values was 
plotted in Figure 3. The model was characterized by good correlation (R²=0.88, RMSE=0.17) 
and robustness (Q²LOO=Q²5CV=0.85 and Q²10CV=0.84). The Y-scrambling method validated the 
model because of low values of R² for the models obtained after randomisation (R2

YS=0.09, 
SDYS=0.07). As seen in Figure 4, the determination coefficient of each new model 
(R2random) can be plotted versus the correlation between original and randomized y-values 
(R²Yrandom/Yexp). Besides, the criterion of Rücker [43] was respected: R² - R2

YS (0.79) is 
higher than 3 SDYS (0.22). 
The predictive power was high (R²EXT=0.81, RMSEEXT=0.22, Q²EXT=0.81), in particular in the 
applicability domain (R²IN=0.78 and RMSEIN=0.23) from which only one molecule 
(Methylene-bis-N,N'-(2,2,2-trinitroacetamide)) was excluded in the validation set. 
This model was fully validated and all descriptors involved in equation 8 can be easily 
calculated from the 2D-structures of the molecules. Moreover, performances from this 
multivariate analysis were improved compared to the ones of OB100-based linear model (Eq.6) 
since it presented higher R2 than R2

EXT values. 
 

Model with all descriptors 
In this section, a model for impact sensitivity was developed by taking into account the whole 
set of 400 calculated descriptors to find out if a better model including chemically 
interpretable descriptors could be obtained. A model with four descriptors was derived (see 
Figure 5 and Table S7): 
logh50% = – 0.018 OB + 4.07 PQmax-Qmin + 28.5 Q²NO2,max + 4.80 NO,max – 0.438  (9) 
with OB the oxygen balance as defined in the TDG regulation [27], PQmax-Qmin the polarity 
parameter [52,28] defined by the difference between the maximum and minimum charges in 
the molecule (t-test=7.1), Q²NO2,max the squared of the maximum NO2 charges obtained by 
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natural population analysis [53] (t-test=5.4) and NO,max the maximum nucleophilic reactivity 
index for a O atom (t-test=2.9).  
The first observation is that the OB descriptor which has already been exhibited as one of the 
most correlated descriptors in linear analysis (see Table 2) is the most important descriptor in 
the equation (t-test=-14.8). The last three ones are quantum chemical descriptors. NO,max and 
Q2

NO2,max are related to the electronic and reactivity properties of nitro groups, which are 
critical in the decomposition process of nitro compounds. NO,max was computed from Codessa 
software whereas Q2NO2,max was calculated externally, inspired by the works of Zang [14] and 
Cao [54]. Besides, the electronic properties of nitro groups also strongly influence the last 
parameter, PQmax-Qmin. 
As shown in Figure 5, equation 9 presented good correlation (R²=0.93, RMSE=0.13) and 
robustness (Q²LOO=Q²5CV=0.90 and Q²10CV=0.89). The model did not result from chance 
correlation, since the models issuing from Y-randomization presented low correlations 
(R²YS=0.12, SDYS=0.08). The validation set allowed performing an external validation that 
demonstrated its good predictive power: R²EXT=0.88, RMSEEXT=0.19, Q²EXT=0.86. Only one 
molecule of the validation set (1,1,1,6,6,6-hexanitro-3-hexene) was out of the applicability 
domain. Excluding this molecule, the predictive power remained high with R²IN=0.88 and 
RMSEIN= 0.19. 

 
Model with quantum chemical descriptors 

As three out of the four parameters exhibited from previous equation (Eq.9) were quantum 
chemical descriptors, a new model using only this class of descriptors was developed (see 
Table S8). To this end, 172 quantum chemical descriptors were employed and a four 
parameter model was obtained: 
logh50% = – 1.6 Nocc/natoms – 1.4QO,min – 0.013 HDSA1 – 16.5 BON,max + 31 (10) 
with Nocc/natoms the number of occupied electronic levels divided by the number of atoms (t-
test=-13.9), QO,min the minimal net atomic charge for a O atom (t-test=-4.3), HDSA1 the 
hydrogen bonding donor ability of the molecule (t-test=-5.1) and BON,max the maximal bond 
order for a N atom (t-test=-3.9). It can be noticed that a different set of quantum chemical 
descriptors was selected (compared to Eq.9) which could be explained by the important 
intercorrelation between most of these descriptors in particular those characterizing the 
distribution of charges in the molecules. Among these descriptors, oxygen and nitrogen 
atoms, that constitute the nitro groups, stand out in this model: the first because of its charge, 
the second for its bond order. These descriptors are related to the presence of the nitro groups 
in the molecule and its stability.  
This model (Eq. 10) presented also high performances in terms of correlation (R²=0.90, 
RMSE=0.16), robustness (Q²LOO=0.87, Q²10CV=0.87 and Q²5CV=0.88) and predictivity 
(R²EXT=0.73, RMSEEXT=0.29, Q²EXT=0.68) as seen in Figure 6. Moreover Y-scrambling test 
ensured against chance correlation (R2

YS=0.12 and SDYS=0.08). For this model, the whole 
validation set was included into the applicability domain and the predictive power was 
R²IN=0.73 and RMSEIN=0.30. Finally, this model was less powerful than the two first ones 
and did not improve the mechanism meaning. 
 
4. Discussion 
In this paper, four predictive QSPR models were developed and successfully validated 
according to the OECD principles for the validation of QSAR/QSPR models. A first linear 
model (Eq. 6) based on oxygen balance presented sufficient performances for use as a first 
evaluation method. Then, three models (Eqs. 8-10) presenting better performances were 
obtained using multi-linear regressions. The three models had comparable performances in 
terms of fitting (with R²≥0.88 and RMSE≤0.17) and robustness (Q2

LOO≥0.85) as shown on 
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Table 3. The first model with only constitutional descriptors (Eq. 8) presented already 
remarkable predictive power (R2

IN=0.78 and RMSEIN=0.23) and the advantage to be easy to 
use for new predictions, since no advanced calculations were needed to compute the 
descriptors in these models. Even more accurate predictions (R2

IN=0.88 and RMSEIN=0.19) 
were obtained by including quantum chemical descriptors. Besides, the analysis of the only 
quantum chemical descriptors led to lower reliability in prediction (R2

IN=0.73 and 
RMSEIN=0.30) demonstrating the pertinence of associating both constitutional and quantum 
chemical descriptors in the same model.  
Table 4 allows comparison of performances between the two new models presenting the 
better performances (Eqs. 8-9) and those extracted from literature. The new MLR models 
present better correlation than the model of Mullay [8] (R²=0.82) and the two ones of 
Keshavarz [15,18] (R²=0.77 and 0.85 respectively). Only Kamlet’s model [7] is better in 
fitting (R²=0.94 vs R²≤0.93 in this study) but without internal or external validation and 
limited to C(NO2)3 compounds.  In order to have a better comparison with our models, the 
predictivity of the Kamlet’s and Mullay’s models was computed using the molecules of the 
data set not used in the definitions of their models (see definition in Table S1). The computed 
predictivities for both models (R²EXT=0.74 and 0.70 for the model of Kamlet and Mullay, 
respectively) were significantly lower than those obtained for the models developed in this 
study (R²EXT≥0.81).  It should be noticed that Keshavarz’s models [15,18] were not tested for 
predictivity because they were developed on the same data set. 
The two new models were also compared with Wang’s models (MLR and PLS) for 
nitroaliphatic compounds [22], which were externally validated. The goodness-of-fit of the 
new MLR models (Eqs. 8-9) were higher than those of Wang’s models (R²≥0.88 vs. R²=0.80 
and 0.78 for MLR and PLS respectively). Moreover, internal validation exhibited a high 
robustness for the two new MLR models (Q²LOO≥0.85) whereas Wang’s models felt 
(Q²LOO=0.51 and 0.48 for MLR and PLS, respectively) due to potential over-parameterization 
(since 13 descriptors are used in the work of Wang vs. 3 and 4 in this study for Eq.8 and 9 
respectively). Furthermore, if the predictivity of Wang’s models was also remarkable 
(R²EXT=0.93 for MLR and 0.97 for PLS) as the one of the best new MLR model (R²EXT=0.88, 
for Eq.  9), Wang did not define any applicability domain.  Besides, the model using only 
constitutional descriptors remained attractive since it associated good predictivity 
(R²EXT=0.81) with low computer times. 
 
5. Conclusion 
A data set of 50 nitroaliphatic compounds was used to correlate their impact sensitivities to 
their molecular structures characterized by more than 400 descriptors including quantum 
chemical ones. Two efficient QSPR models (when considering only constitutional descriptors 
or all types of descriptors) were built in agreement with all OECD validation principles of 
QSAR/QSPR models for regulatory use:  

1) The endpoint is well defined as the impact sensitivity which characterizes one aspect 
of explosibility property of chemicals. All experimental values, extracted from a 
unique database [26], were performed based on the same protocol (drop weight impact 
test).  

2) Algorithms are unambiguous: they consist in multi-linear equations with completely 
defined descriptors, calculated from DFT optimized structures at PBE0/6-31+G(d,p) 
in the case of the model using quantum chemical descriptors.  

3) Models are applicable to nitroaliphatics. The applicability domains were built by 
interpolation to include 95% of the molecules of the training set based on the 
descriptors included in the models.  

4) The performances of the models were estimated by various validation tests:  
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-goodness-of-fit was characterized for the molecules of the training set (R², RMSE); 
-robustness was evaluated by LOO and LMO cross validations (Q²LOO, Q²10CV, Q²5CV); 
-chance correlation was checked by Y-scrambling tests (R2

YS, SDYS); 
-predictive power was defined using an external validation set (R²EXT, RMSEEXT, 
Q²EXT), taking also into account the applicability domain (R²IN, RMSEIN, Q²IN). 

5) Some hints were provided concerning the mechanistic interpretation of models. 
Indeed, several descriptors (notably of quantum chemical type) were identified as 
related to NO2 groups that are critical in the chemical mechanism involved in the 
decomposition process of nitro compounds [48-51]. 

 
Finally, among the four models developed in this study for nitroaliphatic compounds, the two 
selected ones are to the best of our knowledge the first QSPR models that can accurately 
predict the impact sensitivity of energetic compounds following all OECD principles needed 
for regulatory use. One of them does not need any advanced quantum chemical calculations 
and is then easy to use and implement whereas the other including quantum chemical 
descriptors achieved more reliable predictions. These models could now be used as efficient 
alternative methods to experimental characterization to gather impact sensitivity values for 
nitroaliphatic compounds for which experimental values are unavailable or even for 
compounds that are not yet synthesized (as a preliminary screening test). 
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Figure 1. Experimental impact sensitivity (h50% in cm) vs Oxygen Balance (OB100). Linear 
and logarithmic fittings are also indicated in blue full line and red dotted line respectively 

 
Figure 2. Experimental vs. predicted logh50% from the linear model based on Oxygen Balance 
(OB100) (Eq. 6) 

 
Figure 3. Experimental vs. predicted logh50% from the model based on constitutional 
descriptors (Eq. 8) 
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Figure 4. Results of Y-scrambling test in terms of R²Yrandom/Yexp vs. R²random for the model 
based on constitutional descriptors (Eq. 8) 

 
Figure 5. Experimental vs. predicted logh50% from the model based on all calculated 
descriptors (Eq. 9) 

 
Figure 6. Experimental vs. predicted logh50% from the model based on quantum chemical 
descriptors (Eq. 10) 
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Table 1: Experimental and predicted values for h50% (from Eqs. 6, 8, 9, 10) 

 Molecules h50% exp logh50% exp Eq. 6 Eq. 8 Eq. 9 Eq. 10 
 Training Set        

 
  

mol1 1,1,1,3,5,5,5-heptanitropentane 8 0.90 1.02 0.75 0.84 0.79 
mol2 1,1,1,6,6,6-hexanitro-3-hexyne 7 0.85 1.25 0.88 0.90 0.82 
mol3 3,3,4,4-tetranitrohexane 80 1.90 2.18 1.91 1.89 2.10 
mol4 2,2,4,4,6,6-hexanitroheptane 29 1.46 1.71 1.55 1.41 1.57 
mol5 2,2,4,6,6-pentanitroheptane 56 1.75 2.03 1.85 1.91 1.66 
mol6 2,2,2-Trinitroethyl-carbamate 18 1.26 1.35 1.43 1.30 1.28 
mol7 2,2-Dinitro-1,3-propane-diol 110 2.04 1.71 1.98 2.16 2.05 
mol8 Methyl-2,2,2,-trinitro-ethyl carbonate 28 1.45 1.71 1.74 1.56 1.71 
mol9 4,4,4-trinitrobutyramide 40 1.60 1.71 1.62 1.80 1.73 
mol10 Bis-(2,2,2trinitroethyl)-carbonate 16 1.20 0.87 1.06 1.02 1.04 
mol11 Bis-(trinitroethoxy)-methane 17 1.23 1.05 1.22 1.24 1.27 
mol12 N,N'-Bis-(2,2,2-trinitroethyl)-urea 17 1.23 1.18 1.07 1.19 1.18 
mol13 Ethyl-2,2,2-trinitro-ethylcarbonate 81 1.91 1.63 2.00 1.88 2.04 
mol14 Bis-(trinitroethyl)-oxalate 15 1.18 1.12 1.16 1.03 0.87 
mol15 Bis-(trinitroethyl)-oxamide 13 1.11 1.22 1.18 1.18 1.30 
mol16 N-trinitroehyl-4,4,4-trinitrobutyramide 18 1.26 1.34 1.24 1.21 1.28 
mol17 1,5-bis-(trinitroethyl)-biuret 24 1.38 1.28 1.28 1.19 1.19 
mol18 N-(t-butyl)-trinitro-acetamide 110 2.04 2.37 2.08 2.13 2.12 
mol19 1,1,1,7,7,7-hexanitroheptanone-4 34 1.53 1.50 1.40 1.51 1.57 
mol20 2,2-dinitropropyl-trinitrobutyrate 151 2.18 1.77 1.78 2.01 1.89 
mol21 2,2,2-trinitroethyl-4,4-dinitrovalerate 70 1.85 1.77 1.78 1.88 1.86 
mol22 Bis-(2,2-dinitropropyl)-carbonate 300 2.48 1.84 2.17 2.33 2.30 
mol23 Bis-(trinitropropyl)-urea 23 1.36 1.61 1.59 1.24 1.41 
mol24 Bis(trinitroethyl)fumarate 14 1.15 1.44 1.42 1.38 1.24 
mol25 Trinitroethyl-bis-(trinitroethoxy)-acetate 6 0.78 1.11 1.02 1.03 1.07 
mol26 4,4,4-trinitrobutyric anhydride 30 1.48 1.43 1.58 1.55 1.59 
mol27 2,2,2 trinitroethyl-4,4-dinitrohexanoate 138 2.14 1.99 2.02 2.07 2.03 
mol28 Nitroisobutyl-4,4,4-trinitrobutyrate 279 2.45 2.35 2.33 2.42 2.39 

mol29 
Tetrakis-(2,2,2-trinitro-ethyl)-
orthocarbonate 7 0.85 0.87 0.66 0.86 1.06 

mol30 Methylene-bis-(4,4,4-trinitrobutyramide) 113 2.05 1.80 1.93 1.92 1.90 
mol31 Ethylene-bis-(4,4,4-trinitrobutyrate) 120 2.08 1.89 2.13 1.90 1.99 

mol32 
N,N'-Bis-(2,2-dinitro-propyl)-4,4,4-
trinitro-butyramide 

72 1.86 1.88 1.94 1.83 1.86 

mol33 
2,2-dinitropropane-1,3-1,3-diol-bis-
(4,4,4-trinitro butyrate) 50 1.70 1.64 1.79 1.71 1.58 

mol34 
Bis-(2,2,2trinitroethyl)-4,4,6,6,8,8-
hexanitro-undecanedioate 32 1.51 1.51 1.60 1.70 1.43 

 
   

 
   

 Validation Set      
  

  
mol35 1,1,1,3-tetranitrobutane 33 1.52 1.54 1.39 1.40 1.52 
mol36 1,1,1,6,6,6-hexanitro-3-hexene 17 1.23 1.37 1.06 1.04 1.09 

mol37 
Methylene-bis-N,N'-(2,2,2-
trinitroacetamide) 9 0.95 0.99 0.91 0.73 0.68 

mol38 5,5,5-trinitropentanone-2 125 2.10 1.99 1.83 2.21 2.09 
mol39 N-(2-propyl)-trinitroacetamide 112 2.05 2.06 1.82 1.83 1.89 
mol40 2,2,2-Trinitroethyl-4,4,4-trinitrobutyrate 18 1.26 1.29 1.23 1.43 1.34 
mol41 Trinitroethyl-2,2-dinitropropylcarbonate 15 1.18 1.31 1.62 1.49 1.60 
mol42 Tris-(2,2,2-trinitroethyl)-orthoformate 7 0.85 0.93 0.93 0.88 1.06 
mol43 Methylene-bis-(trinitroethyl)-carbamate 27 1.43 1.45 1.61 1.25 1.13 
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mol44 2,2 dinitropropyl–4,4,4-trinitrobutyramide 72 1.86 1.83 1.79 1.85 2.03 
mol45 Bis-(1,1,1-trinitro-2-propyl)-urea 19 1.28 1.61 1.59 1.37 1.79 
mol46 Bis-(2,2,2-trinitroethyl)-succinate 30 1.48 1.53 1.66 1.54 1.50 
mol47 Bis-(2,2-dinitropropyl)-oxalate 227 2.36 2.06 2.26 2.33 2.23 
mol48 N,N'-bis-(3,3,3-trinitro-propyl)-oxamide 45 1.65 1.62 1.69 1.59 1.80 
mol49 2,2 dinitrobutyl-4,4,4-trinitrobutyramide 101 2.00 2.05 2.03 2.15 2.29 

mol50 
Bis-(2,2,2-trinitro-ethyl)-4,4-dinitro-
ethyl)-4,4-dinitroheptanedioate 68 1.83 1.64 1.79 1.66 1.60 

 

Table 2: Descriptors presenting the best linear correlations with logh50% for the whole data set 

R²  Descriptors 

0.78 Relative number of aromatic bonds   

0.78 Oxygen balance (OB100) according to Kamlet [7] 

0.77 Ratio of number of C atoms on molecular weight 

0.77 Relative number of single bonds 

0.76 Oxygen balance (OB) according to regulation [27] 

0.76 Ratio of zero point vibrational energy on the number of atoms 

0.76 
Ratio of number of occupied electronic levels on the number of 
atoms 

0.76 Relative molecular weight 

0.75 Relative number of H atoms 

0.73 Ratio of number of H atoms on molecular weight 

 

Table 3: Performances of QSPR models developed for logh50% of nitroaliphatic compounds 

in this study 

 Eq. 6 Eq. 8 Eq. 9 Eq. 10 
R² 0.72 0.88 0.93 0.90 

RMSE 0.15 0.17 0.13 0.16 
Q²LOO 0.69 0.85 0.90 0.87 
Q²10CV 0.69 0.84 0.89 0.87 
Q²5CV 0.70 0.85 0.90 0.88 
R2

YS 0.03 0.09 0.12 0.12 
SDYS 0.04 0.07 0.08 0.08 
R²EXT 0.92 0.81 0.88 0.73 

RMSEEXT 0.15 0.22 0.19 0.29 
Q²EXT 0.89 0.81 0.86 0.68 
R²IN 0.92 0.78 0.88 0.73 

RMSEIN 0.15 0.23 0.19 0.30 
Q²IN 0.89 0.78 0.87 0.68 
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Table 4: Performances of the two more reliable QSPR models developed for logh50% of 

nitroaliphatic compounds in this study and extracted from literature 

 

Models Nmol/Ndesc R² RMSE Q²LOO R²EXT RMSEEXT 
Eq. 8 (constitutional descriptors) 50/3 0.88 0.17 0.85 0.81 0.22 
Eq. 9 (all descriptors) 50/4 0.93 0.13 0.90 0.88 0.19 
Kamlet [7]b 28/1 0.94 N.A. N.A. 0.74a N.A. 

Mullay [8] 41/1 0.82 N.A. N.A. 0.70a N.A. 

Keshavarz, 2005 [18] 58/5 0.85 0.20 N.A. N.A N.A. 

Keshavarz, 2007 [15] 58/4 0.77 0.19 N.A. N.A N.A. 

Wang [22] 43/13 0.80 0.20 0.51 0.93 0.19 
 
a determined based on the molecules of the dataset that were not used for the development of 

models in the original work (see supporting information) 
b only applicable for C(NO2)3 compounds 
 
 

 

 
 
 
 


