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Abstract

The European regulation of chemicals named REACHIiga the assessment of a large
number of substances based on their hazardous rpespeHowever, the complete
characterization of physico-chemical, toxicologicahd eco-toxicological properties by
experimental means is incompatible with the impassldndar of REACH. Hence, there is a
real need in evaluating the capabilities of altemeamethods such as Quantitative Structure-
Property Relationship (QSPR) models, notably forspto-chemical properties.

In the present work, the molecular structures ohi@aliphatic compounds were correlated
with their impact sensitivities §ky,) using such predictive models. More than 400 md&c
descriptors (constitutional, topological, geometiiguantum chemical) were calculated and
linear and multi-linear regressions were perforrt@éind accurate quantitative relationships
with experimental impact sensitivities. Considerinigfferent sets of descriptors, four
predictive models were obtained and two of themeveedected for their predictive reliability.
To our knowledge, these QSPR models for the impaxsitivity of nitroaliphatic compounds
are the first ones being rigorously validated (bwoiternally and externally) with defined
applicability domains. They hence follow all OECBngiples for regulatory acceptability of
QSPRs, allowing possible application in REACH.

Keywords: impact sensitivity; QSPR; nitroaliphatiompounds; quantum chemistry; OECD
principles; REACH regulation
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1. Introduction
The European Union regulation REACH (Registratidyaluation, Authorization and
Restriction of Chemicals) [1], entered into itsisdgtion phase in December 2008. It requires
the evaluation of physico-chemical, toxicologicaldaeco-toxicological properties for a
tremendous number of chemicals. Indeed, more tH&0Q0 existing substances have been
pre-registered by 65 000 companies and are expexteel registered before 2018. Moreover,
all new substances require an early examinatiordeatify possible hazards. Taking into
account all the constraints imposed by the reqatithe complete experimental
characterization of all substances is not real{gticreasons of time, costs or ethics in case of
tests on animals). Thus, the development of altemdpredictive) methods to evaluate the
properties of chemicals was recommended in thedvaork of REACH.
In this context, we developed and validated thémakmodels, based on robust computational
approaches, which represent a viable alternativantwe conventional experiments. In
particular, we focused on Quantitative Structuregerty Relationship (QSPR) models, which
have been clearly identified in REACH legislatidBesides, models have already been
developed for both environmental and physico-chemproperties in the scope of this
regulation [2-4].
To support this development, OECD drawn up the B\ohg principles for the validation of
QSPR models [5]:

1.A defined endpoint (including experimental protgcol

2.An unambiguous algorithm;

3.A defined domain of applicability;

4.Appropriate measures of goodness-of-fit, robustaesispredictive power;

5.A mechanistic interpretation, when it's possible.
Following these criteria, four QSPR models wereeligyed in the present study for the
impact sensitivity of nitroaliphatic compounds. Fiproperty, characterizing the tendency of a
material to react under the effect of a mechanioglact, is one of the most important to
classify explosible substances according to theopgan regulation related to the
Classification, Labelling and Packaging of subsésrnend mixtures (CLP) [6].
Many QSPR models have been already developed i®mptbhperty and, some of them, for
nitroaliphatic compounds. The first one was publisity Kamlet [7] in 1976 for trinitro-
aliphatic compounds and consisted in a simple lieggation based on the oxygen balance
that characterizes the oxydability of explosivestdr, Mullay developed another linear model
using the molecular electronegativity [8,9]. Moeeently, quantum chemical descriptors have
been introduced. For example, Politzer [10,11]eRi2] and Badders [13] used the midpoint
potential that characterizes the electrostatic mi@kecreated by the charges of the C and N
atoms at the mid-point of C-N(bonds and Zang [14] exhibited correlations with tfitro
group charge. In parallel, Keshavarz [15-18] depetb multivariate models using
constitutional parameters, such as the ratio ofntimaber of particular molecular fragments
on the molecular weight. Lai [19] proposed a newdeipbased on the ones of Keshavarz and
Kamlet that included an additional term based onptesence and the number of specific
fragments. All these models were characterized dydgdetermination coefficients (R2) but
they were not validated (either with respect tardarnal or external set of compounds) and
their respective applicability domains were not imesd. Few models using neural
networks [20-21] with different sets of descriptarsre also developed for nitro compounds.
To our knowledge, the more predictive existing nmied®r the impact sensitivities of
nitroaliphatic compounds have been developed bydNag] using a multi-linear regression
(R2=0.80, Q%0=0.51 and R&+=0.93) and partial least square (PLS - R?=0.780£30.48
and Rgxt=0.97) based on a series of electrotopological rqescs. As indicated, the
determination coefficients for the molecules of taidation set were high but a failure in
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robustness can be noticed probably due to the langeber of descriptors (13) in models.
Moreover, no applicability domains were defined andlyzed.

Consequently, none of these models fits all OEGInddrds and cannot be used, therefore,
within REACH regulation. In order to fill this gafhis paper aimed to develop fully validated
QSPR models to predict the impact sensitivity oinifbaliphatic compounds respecting all
OECD principles including the determination of theapplicability domains. About
400 descriptors were calculated, including quantahemical ones based on density
functional theory (DFT) calculations. These lattesre performed to have a better chemical
interpretation of the developed models as alreadsnahstrated in previous works for
nitroaromatic compounds [23-25].

At first, linear regressions were performed andrst ¥alidated model was proposed. Then
several multi-linear regressions (MLR) were devetbpe reach better performances using
different sets of descriptors. The first one congdeonly constitutional descriptors that only
need the 2D structures of molecules. The secondvasesxtended to all types of descriptors
and the last one focused only on quantum chemieatriptors that could provide better
chemical insights. Also all models were validateg & series of internal and external
validation methods. To our knowledge, they represiem first models dedicated to energetic
properties proposing a complete validation protedsiding cross validations to characterize
robustness, Y-randomization techniques to avoichobaorrelations and external validation
to estimate predictive power of models and takintg account the applicability domain.

2. Computational details

2.1. Experimental dataset

The considered dataset contained 50 experimenfadtrsensitivity values of nitroaliphatic
compounds (see Table S1 in supporting informatansfructures) that have been extracted
from a single reference [26] to ensure that thegevabtained using a single protocol (by drop
weight impact tests in the work of Storm [26]), regjuired by the first OECD point. The
impact sensitivity, notedshy, is a quantity which measures (in centimeters)ndgight from
which the fall of a weight of a given mass on a glemcauses a reaction with a 50%
probability level. Substances with lowoh values are the most sensitive since they need less
energy to react. This impact test requires relftigenall quantities of material (ac700 mg)
but does not exhibit good resolution or reproduitibilt is then used to separate qualitatively
explosives into classes of similar handling hazfirfisAlso, the test of sensitivity to impact is
a regulatory test within the frameworks of CLP @8] Transport of Dangerous Goods (TDG)
[27]. To allow an external validation of modelsettiata set was then divided into a training
set, containing two thirds of the molecules of ta¢a set and a validation set constituted by
the remaining molecules. This splitting was carried tmguarantee similar distributions of
the hyoe values in both sets [28]. In practice, compounésewnclassified by increasing order
of hsge, and one molecule out of three molecules was ssldct constitute the validation set.
This partition enables both sets to be of sufficieme with similar distributions to allow a
robust development and validation of models. Moreome bias in representativeness was
identified when inspecting the chemical structwéboth sets. The so defined training set of
34 compounds was used for the development andhtbmal validation of models, while the
validation set of 16 compounds was considered fdereal validation to evaluate their
predictive power. The repartition of data betweeining and validation sets as well as the
corresponding experimental values are reportedalerl.

2.2.Molecular structures calculation



A preliminary conformation analysis was carried outh Scigress software [29] using the
Conflex algorithm [30,31] and the MMS3 force fieldq]. This analysis generated

automatically all possible conformations of molesuland their energy. The most stable
conformer (the one with the smaller energy) of eawblecule was used as molecular
structure. Then it was optimizated with Gaussias@Bvare [33] using DFT calculations with

the PBEO [34] functional and the 6-31+G(d,p) baset. Vibrational frequencies were

computed at same level of calculation to ensure dhdinal stable conformations exhibited

no imaginary frequency.

2.3. Molecular descriptors calculation

Each molecular structure was then characterizea Isgries of descriptors. According to
Todeschini and Consonni [35], the “molecular dgsori is the final result of a logic and
mathematical procedure which transforms chemicarimétion encoded within a symbolic
representation of a molecule into a useful numberthe result of some standardized
experiment” Different kinds of calculated descriptors canlrentconsidered [36]:

» Constitutional descriptors, such as the number peciéic atoms, functional
groups or bonds;

e Topological descriptors, which are calculated fratomic connectivity in the
molecule and give information about size, composiaind branching degree (e.g.
Weiner, Balaban or Randic indices);

» Geometric descriptors, related to the 3D-structstgch as distances, angles,
molecular volume or surface area;

* Quantum chemical descriptors, like atomic chargesctronic and binding
information, molecular orbital energies or reagyivndices.

Most of the descriptors considered in the presapepwere calculated using the CodessaPro
software [37]. Others were extracted from examamatdf chemical structures or from the
works of Kamlet [7], Mullay [9], Badders [13] andekhavarz [17]: oxygen balance (38,
molecular electronegativityxfo), the ratio of the number of atoms (C, H, O or &¥)
molecular weight (@mw, ni/mw, no/mw, n/mw) and the number of specific fragments (as
Ncne). Moreover, descriptors issuing from conceptuallP88,39], already successfully used
in QSPR models for the prediction of the heat ofcoteposition of nitroaromatic
compounds [21,23-25], were considered. More de#dilsut descriptors are available in [37]
or in supporting information (Tables S2 and S3).

2.4.Model building

All models were developed on the training set using Best Multi Linear Regression
(BMLR) approach [36] as implemented in CodessaRognam [37]. This approach gave the
most correlated model at each rank (i.e. for eachban of descriptors) and the final model
was chosen as the best compromise between casreland number of descriptors as
explained in previous works [24,28].

2.5. Performances of models

To evaluate the performances of models, a serigstefnal and external validations were
computed. The goodness of fit was measured byotbiternean square error (RMSE) between
predicted and experimental values:

RMSE= 1)

With y. the calculated value of the property, the experimental oney the mean of
experimental values, n the number of moleculespatind number of descriptors.
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Correlation was also characterized through therohétation coefficient (R?):

Z(9| —Yi )2
Re=1-12—— (2)

Z(Yi - y)z

i=1
Moreover, a Student'stest validation at a confidence level of 95% wasputed to confirm
the pertinence of each descriptor. The descriptatts the highest-test values are the most
relevant in the model.

The Q2 coefficient issued from both leave-one-u@@) and leave-many-out (LMO) cross
validations measured the robustness of the model,the dependence of the fitting on
particular molecules or groups of molecules oftth@ing set.

Z(g/i/i —Yi )2
Qz :1_—'=ln (3)

Z(Yi - 37)2

i=1

With V., the predicted value of th8 molecule from the model refitted without usingsth’
molecule.
Robust models are expected to present a low diféeréetween Q2 and R? coefficiertshas
to be noticed that cross validation does not meash predictivity of models because the set
of molecules excluded at each step of the crosslatan procedure and then used to
calculate @ has already been used for the building of the ridde41].

To ensure that models did not correspond to chapceslations, a Y-scrambling test was
realized. Random permutations of experimental ptgpealues were performed (500
iterations) and new models were recalculated [42,43) evaluate the impact of
randomization, average and standard deviation ipqgz2coefficients were calculated R
and SOs). Low Ris values are expected to avoid chance correlatian.gd further,
Riicker proposed that the difference between Rhefariginal model and s should be
roughly> 2.3 SDs to ensure a statistical significance at a 1% lewel> 3 SD,s at a 0.1%
level [43].

The predictive power of models was measured onvdliglation set based on thegR?
coefficient, which measures the correlation betwgrexdicted and experimental values for the
molecules of the validation set and the root megandard error of predictions (RMg&k).
Moreover, the Q% coefficient (Eq. 4) was calculated as proposed impsha [44] and the
OECD guidance document [5].

Mext

Z(yi Y )2

—_ i=1

Qexr?=1- 4)

Next

Z (yi - yTR)z

i=1
With y. the predicted value of the property, the experimental value of the property,

the mean experimental value in the training set andthe number of molecules in the
validation set.




A QSPR model only offers reliable predictions fonmgpounds similar to those belonging to
the training data set. In this study, the appliigbdomain (AD) [45,46], required by the
3YOECD point, was determined based on the descrifotsded in the model. Euclidean
distance method available in Ambit discovery sofewvgl7] was used with a 95% threshold,
i.e. the domain was calculated to contain 95% efrtiolecules of the training set. Then, the
predictivity inside the applicability domain wassalcalculated based only on the molecules
of the validation set that belonged to this don{&#\, RMSEy and Q).



3. Results

3.1.Linear regressions

Firstly, linear regressions were performed on thére data set to evaluate the global
performances of descriptors not only witfyhbut also with logkyy, as commonly proposed
in previous existing models [7,9,13,15-17]. Thetbmsrelations were obtained for lagh.
Indeed, the highest correlation considerirgyteached B=0.57 (obtained with the relative
number of aromatic bonds) whereas the ten moseleded descriptors, as shown in Table 2,
ranged from RB=0.73 to 0.78 with logfyss

To illustrate this point, oxygen balance ({98, presenting one of the most correlated
descriptors with bothdy, and loghge,Was represented as function of the experimentahatnp
sensitivity in Figure 1. This descriptor was defir®y Kamlet [7] as

OBjoo= 100 (21y-ny-2Nnc-2ncoo)/mw (5)

and used as a criterion to evaluate explosibilapacity of CHNO compounds [27]. It is
similar to the oxygen balance (OB) defined in thd kégulation related to the transport of
dangerous goods (TDG) as a criterion for explosm@pounds [27].

From the plot of Figure 1, it appears that the fagmic fitting is significantly better than the
linear one (R2=0.78 and R2=0.51, respectively). $ame behaviour was noticed for almost
all the others descriptors when used alone. Thexefanly loglage, Wwas considered in the
following of the study.

Moreover, the pertinence of including external dgsors that were not calculated using
CodessaPro software was confirmed as they reprégsentout of the ten most correlated
descriptors: OBy nc/mw, OB and p/mw (see Table 2). Also, some quantum descriptors
stood out: the ratio of the zero point vibratioeakergy on the number of atoms and the ratio
of the number of occupied electronic levels onrthmber of atoms.

Finally, regarding the high correlation of @Bwith loghsgs, a first linear model (see Table
S4).was developed by considering a complete vabdamethod (including external
validation):

loghsoe=1.714 — 0.205 OBy (6)

It has to be noticed that this model is similatite equation proposed by Kamlet [7] even if
this last was only developed from C(B9compounds:

loghsoy=1.753 — 0.233 OBy (7

If Kamlet's equation presented better performamceims of correlation than this new model
(R?2=0.94 and R2=0.72, respectively), it was notdadéd, in particular on an external set of
molecules. On the contrary, the new model (Eq. 83 weveloped according to all OECD
validation principles. It presented good robustn@3%00=0.69, Q%ocv=0.69, Q2cy=0.70)
and it did not result from chance correlation agokled by Y-scrambling (R&=0.03,
SDys=0.04). Concerning predictivity, the model presdrgarticularly high R value (0.92)
which is surprisingly largely superior to thé Bne. Such behavior could be related to the
small size of the validation set. Nevertheless, distribution of property values was quite
homogeneous in the validation set as shown on &igurAnother explanation could be a
structural bias between the training and the vabdasets. To explore this hypothesis, a series
of 10 random partitions has been set up and madels developed for each of them (Table
S5). Seven out of the ten randomized models predeseame behaviour (B&>R?). The
average values of B remained higher than®Pnes but none of the randomized partition
allowed to reach R%r=0.92 of Equation 6. Moreover, when inspecting ttteemical
structures of validation sets for each 10 randocdhigartition, no particular molecule was
included in the three partitions presenting,i2R? (partitions 1,5,7) and absent in the other
seven ones. So, no structural feature was idemtifbeexplain this behaviour. Furthermore,
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high standard deviations were observed for bothR(0.08) and R (0.04) which can be
explained from high experimental uncertainties.

Nevertheless, this linear model presented alreadg good performances and could be used
for first evaluation of the property from a singlenstitutional descriptor which can be easily
calculated (i.e. without any software). In a nexfps multi-linear regressions were computed
to achieve models that could improve prediction.

3.2. Multi-linear regressions

Three models with performances summarized in T&bleere developed with the BMLR
method. The first one was built only from constangl descriptors which do not require the
3D molecular structures (i.e. without any quantuimergical calculations). Then, all
descriptors (about 400) were taken into accounté&ermining a second model, while a third
one was defined on the basis of only quantum descsi.

Model with constitutional descriptors
From 66 constitutional descriptors, a three-parametodel (see Table S6) was found to be
the best compromise between correlation and nuwibeescriptors among the six equations
sorted out by the BMLR method:
l0ghsgo= -2.53 M/Natom+ 0.07 Ringie— 0.25 Ro2 + 1.94 (8)
with ny/Naom the relative number of N atoms (t-test= -2.2),4@ the number of single bonds
(t-test=7.9) and b, the number of N@groups (t-test=-8.4). From a chemical point ofwie
the occurrence of N{Ocan be explained because the primary cleavageeo€tNQ bond is
known to be the main mechanism of decompositiong#8-The relative number of N atoms
and the number of single bonds are not so straigh#rdly interpretable.
The predicted impact sensitivity using equations8fanction of experimental values was
plotted in Figure 3. The model was characterizedydgd correlation (R2=0.88, RMSE=0.17)
and robustness (Rf=Q%cv=0.85 and Q%c\=0.84). The Y-scrambling method validated the
model because of low values of R? for the modelsinbd after randomisation t=0.09,
SDys=0.07). As seen in Figure 4, the determination faneht of each new model
(R’random) can be plotted versus the correlation betweriginal and randomized y-values
(R2Yrandom/Yexp). Besides, the criterion of Riicl8] was respected: R2? -2R (0.79) is
higher than 3 Six (0.22).
The predictive power was high @#3=0.81, RMSEx=0.22, Qgx7r=0.81), in particular in the
applicability domain (R{=0.78 and RMS[R=0.23) from which only one molecule
(Methylene-bis-N,N'-(2,2,2-trinitroacetamide)) wascluded in the validation set.
This model was fully validated and all descriptamsolved in equation 8 can be easily
calculated from the 2D-structures of the molecule®reover, performances from this
multivariate analysis were improved compared toathes of OByg-based linear model (Eq.6)
since it presented highef Bhan Rexr values.

Model with all descriptors
In this section, a model for impact sensitivity wkeeloped by taking into account the whole
set of 400 calculated descriptors to find out ifbatter model including chemically
interpretable descriptors could be obtained. A rhedth four descriptors was derived (see
Figure 5 and Table S7):
loghsgo, = — 0.018 OB + 4.07 dhax-omint 28.5 QRo2,maxt 4.80No max— 0.438 (9)
with OB the oxygen balance as defined in the TD@ulaion [27], Rmax-omin the polarity
parameter [52,28] defined by the difference betwtbenmaximum and minimum charges in
the molecule (t-test=7.1), Q% max the squared of the maximum BO®harges obtained by



natural population analysis [53] (t-test=5.4) ang.\kthe maximum nucleophilic reactivity
index for a O atom (t-test=2.9).

The first observation is that the OB descriptorahhinas already been exhibited as one of the
most correlated descriptors in linear analysis {&agade 2) is the most important descriptor in
the equation (t-test=-14.8). The last three onesgaantum chemical descriptorse Nxand
Q’Nno2max @re related to the electronic and reactivity proge of nitro groups, which are
critical in the decomposition process of nitro caupds. N maxwas computed from Codessa
software whereas %Ro2 maxWas calculated externally, inspired by the workZaifig [14] and
Cao [54]. Besides, the electronic properties ofongroups also strongly influence the last
parameterPomax-gmin

As shown in Figure 5, equation 9 presented goodelaiion (R?=0.93, RMSE=0.13) and
robustness (Q30=Q%cv=0.90 and Q%c=0.89). The model did not result from chance
correlation, since the models issuing from Y-rantation presented low correlations
(R%s=0.12, SDs=0.08). The validation set allowed performing arteexal validation that
demonstrated its good predictive powergR20.88, RMSEx=0.19, Qgx1=0.86. Only one
molecule of the validation set (1,1,1,6,6,6-hexan®-hexene) was out of the applicability
domain. Excluding this molecule, the predictive powemained high with R=0.88 and
RMSEN= 0.19.

Model with quantum chemical descriptors
As three out of the four parameters exhibited fqor@vious equation (Eq.9) were quantum
chemical descriptors, a new model using only théssc of descriptors was developed (see
Table S8). To this end, 172 quantum chemical desss were employed and a four
parameter model was obtained:
loghsose= — 1.6 NcdNatoms— 1.4Q min— 0.013 HDSAL — 16.5 B@hax+ 31 (20)
with NocdNatoms the number of occupied electronic levels dividgdte number of atoms (t-
test=-13.9), Qmin the minimal net atomic charge for a O atom (t%tetB), HDSAL the
hydrogen bonding donor ability of the moleculegiétt=-5.1) and BQmax the maximal bond
order for a N atom (t-test=-3.9). It can be noti¢kdt a different set of quantum chemical
descriptors was selected (compared to EQ.9) whalidcbe explained by the important
intercorrelation between most of these descriptargarticular those characterizing the
distribution of charges in the molecules. Amongsthelescriptors, oxygen and nitrogen
atoms, that constitute the nitro groups, standrothiis model: the first because of its charge,
the second for its bond order. These descript@seadated to the presence of the nitro groups
in the molecule and its stability.
This model (Eq. 10) presented also high performarineterms of correlation (R2=0.90,
RMSE=0.16), robustness (@%=0.87, Q%ycy=0.87 and Q%\,=0.88) and predictivity
(R%ExT=0.73, RMSEx1=0.29, Q&x1=0.68) as seen in Figure 6. Moreover Y-scramblexgj t
ensured against chance correlatiodygR0.12 and SB=0.08). For this model, the whole
validation set was included into the applicabildpmain and the predictive power was
R2y=0.73 and RMS[R=0.30. Finally, this model was less powerful thha two first ones
and did not improve the mechanism meaning.

4. Discussion

In this paper, four predictive QSPR models were bpesl and successfully validated
according to the OECD principles for the validatiohQSAR/QSPR models. A first linear
model (Eq. 6) based on oxygen balance presentdidisnt performances for use as a first
evaluation method. Then, three models (Eqgs. 8-X8kgmting better performances were
obtained using multi-linear regressions. The thremlels had comparable performances in
terms of fitting (with R20.88 and RMSEO.17) and robustness {@c>0.85) as shown on
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Table 3. The first model with only constitutional sdeptors (Eq. 8) presented already
remarkable predictive power {R=0.78 and RMS=0.23) and the advantage to be easy to
use for new predictions, since no advanced calonlgtwere needed to compute the
descriptors in these models. Even more accuratdigtiens (R=0.88 and RMSg=0.19)
were obtained by including quantum chemical deswr$p Besides, the analysis of the only
quantum chemical descriptors led to lower reliéilin prediction (Rn=0.73 and
RMSEN=0.30) demonstrating the pertinence of associdtioty constitutional and quantum
chemical descriptors in the same model.

Table 4 allows comparison of performances betwéentivo new models presenting the
better performances (Egs. 8-9) and those extracted literature. The new MLR models
present better correlation than the model of Mul&y(R?=0.82) and the two ones of
Keshavarz [15,18] (R2=0.77 and 0.85 respectiveBily Kamlet's model [7] is better in
fitting (R?=0.94 vs R20.93 in this study) but without internal or extdrvalidation and
limited to C(NQ)3; compounds. In order to have a better comparisitim @ur models, the
predictivity of the Kamlet's and Mullay’'s models sv@omputed using the molecules of the
data set not used in the definitions of their medsee definition in Table S1). The computed
predictivities for both models (R4=0.74 and 0.70 for the model of Kamlet and Mullay,
respectively) were significantly lower than thodstained for the models developed in this
study (Rgxr>0.81). It should be noticed that Keshavarz’'s me{iEb,18] were not tested for
predictivity because they were developed on theesdata set.

The two new models were also compared with Wangtdets (MLR and PLS) for
nitroaliphatic compounds [22], which were extemalhlidated. The goodness-of-fit of the
new MLR models (Egs. 8-9) were higher than thos&/ahg’s models (R0.88 vs. R?=0.80
and 0.78 for MLR and PLS respectively). Moreoverteinal validation exhibited a high
robustness for the two new MLR models (§220.85) whereas Wang’'s models felt
(Q3.00=0.51 and 0.48 for MLR and PLS, respectively) dupdtential over-parameterization
(since 13 descriptors are used in the work of Wag3 and 4 in this study for Eq.8 and 9
respectively). Furthermore, if the predictivity &/ang’s models was also remarkable
(R%Ex7=0.93 for MLR and 0.97 for PLS) as the one of thst iImew MLR model (R%7=0.88,
for Eq. 9), Wang did not define any applicabildgmain. Besides, the model using only
constitutional descriptors remained attractive eint associated good predictivity
(R%x7=0.81) with low computer times.

5. Conclusion

A data set of 50 nitroaliphatic compounds was usedorrelate their impact sensitivities to
their molecular structures characterized by moren th@0 descriptors including quantum
chemical ones. Two efficient QSPR models (when idensg only constitutional descriptors
or all types of descriptors) were built in agreemmetth all OECD validation principles of

QSAR/QSPR models for regulatory use:

1) The endpoint is well defined as the impact sensjtiwihich characterizes one aspect
of explosibility property of chemicals. All experental values, extracted from a
unique database [26], were performed based oratihe protocol (drop weight impact
test).

2) Algorithms are unambiguous: they consist in multear equations with completely
defined descriptors, calculated from DFT optimiztdictures at PBEO/6-31+G(d,p)
in the case of the model using quantum chemicalrgesrs.

3) Models are applicable to nitroaliphatics. The aga#ility domains were built by
interpolation to include 95% of the molecules ot ttraining set based on the
descriptors included in the models.

4) The performances of the models were estimated bgusavalidation tests:

10



-goodness-of-fit was characterized for the molexolethe training set (R?, RMSE);
-robustness was evaluated by LOO and LMO crossatidins (Qoo, Q%ocv, Q%cv);
-chance correlation was checked by Y-scramblintp @&ys, SDys);

-predictive power was defined using an externaldasibn set (Rr, RMSE:xr,
Q%x7), taking also into account the applicability doméR3y, RMSEy, Q3n).

5) Some hints were provided concerning the mechanistierpretation of models.
Indeed, several descriptors (notably of quantummited type) were identified as
related to NQ groups that are critical in the chemical mechaniswolved in the
decomposition process of nitro compounds [48-51].

Finally, among the four models developed in thiglgtfor nitroaliphatic compounds, the two
selected ones are to the best of kmowledge the first QSPR models that can accurately
predict the impact sensitivity of energetic compasifollowing all OECD principles needed
for regulatory use. One of them does not need drgreced quantum chemical calculations
and is then easy to use and implement whereas tthey ancluding quantum chemical
descriptors achieved more reliable predictioftsese models could now be used as efficient
alternative methods to experimental characterimate gather impact sensitivity values for
nitroaliphatic compounds for which experimental wed are unavailable or even for
compounds that are not yet synthesized (as a pnalignscreening test).
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Figure 1. Experimental impact sensitivity {J3,in cm) vs Oxygen Balance (Q®). Linear
and logarithmic fittings are also indicated in bfu# line and red dotted line respectively

—— Linear fit (R>=0.51)
------ Logarithmic fit (R*=0.78)
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Figure 2. Experimental vs. predicted logh,from the linear modddased on Oxygen Balance
(OB]_()O) (Eq 6)
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Figure 3. Experimental vs. predicted logh from the modelbased on constitutional
descriptors (Eqg. 8)
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Figure 4. Results of Y-scrambling test in terms ofy&&om/vexp VS. Rfandomfor the model
based on constitutional descriptors (EQ. 8)
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Figure 5. Experimental vs. predicted logh from the modelbased on all calculated
descriptors (Eg. 9)
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Figure 6. Experimental vs. predicted logh from the modebased on quantum chemical
descriptors (Eg. 10)
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Table 1:Experimental and predicted values for oy (from Egs. 6, 8, 9, 10)

Molecules P09 exp | 100509 exp | E. 6 EQ. 8| Eq. 9| Eq. 10

Training Set
moll | 1,1,1,3,5,5,5-heptanitropentane 8 0.90 1.02| 0.79 0.84 0.79
mol2 | 1,1,1,6,6,6-hexanitro-3-hexyne 7 0.85 1.25| 0.8 0.9¢ 0.82
mol3 | 3,3,4,4-tetranitrohexane 80 1.90 218 191 1.89 2.10
mol4 2,2,4,4,6,6-hexanitroheptane 29 1.46 1.71| 1.55 1.41 1.57
mol5 2,2,4,6,6-pentanitroheptane 56 1.75 2.03] 1.85 1.91 1.66
mol6 2,2,2-Trinitroethyl-carbamate 18 1.26 1.35| 1.43 1.3( 1.28
mol7 2,2-Dinitro-1,3-propane-diol 110 2.04 1.71 1.98 2.16 2.05
mol8 | Methyl-2,2,2,-trinitro-ethyl carbonate 28 1.45 1.71 174 1.56 1.71
mol9 | 4,4,4-trinitrobutyramide 40 1.60 1.71 162 1.8( 1.73
mol10 | Bis-(2,2,2trinitroethyl)-carbonate 16 1.20 0.87] 1.06 1.02 1.04
molll | Bis-(trinitroethoxy)-methane 17 1.23 1.05] 122 124 1.27
mol12 | N,N'-Bis-(2,2,2-trinitroethyl)-urea 17 1.23 1.18| 1.07 1.19 1.18
mol13 | Ethyl-2,2,2-trinitro-ethylcarbonate 81 1.91 1.63| 2.00 1.8§ 2.04
mol14 | Bis-(trinitroethyl)-oxalate 15 1.18 1.12 1.1 1.09 0.87
mol15 | Bis-(trinitroethyl)-oxamide 13 1.11 1.22| 1.18 1.1§ 1.30
mol16 | N-trinitroehyl-4,4,4-trinitrobutyramide 18 1.26 134 124 1.21 1.28
mol17 | 1,5-bis-(trinitroethyl)-biuret 24 1.38 1.28] 128 1.19 1.19
mol18 | N-(t-butyl)-trinitro-acetamide 110 2.04 237 2.08 2.13 2.12
mol19 | 1,1,1,7,7,7-hexanitroheptanone-4 34 1.53 1.50{ 1.4Q 151 1.57
mol20 | 2,2-dinitropropyl-trinitrobutyrate 151 2.18 177, 178 2.01 1.89
mol21 | 2,2,2-trinitroethyl-4,4-dinitrovalerate 70 1.85 1.77 1.78 1.8§ 1.86
mol22 | Bis-(2,2-dinitropropyl)-carbonate 300 2.48 1.84 217 2.33 2.30
mol23 | Bis-(trinitropropyl)-urea 23 1.36 161 159 124 141
mol24 | Bis(trinitroethyl)fumarate 14 1.15 144 142 1.38 1.24
mol25 | Trinitroethyl-bis-(trinitroethoxy)-acetate 6 0.78 1.11] 1.02 1.03 1.07
mol26 | 4,4,4-trinitrobutyric anhydride 30 1.48 1.43] 1.58 1.5% 1.59
mol27 | 2,2,2 trinitroethyl-4,4-dinitrohexanoate| 138 2.14 1.99 2.02 2.07 2.03
mol28 | Nitroisobutyl-4,4,4-trinitrobutyrate 279 2.45 2.35 2.33 2.42 2.39
mol2g | Tetrakis-(2,2,2-trinitro-ethyl)- 7 0.85 087| 066 086 1.06

orthocarbonate
mol30 | Methylene-bis-(4,4,4-trinitrobutyramidg) 113 2.05 1.80 193 1.92 1.90
mol31 | Ethylene-bis-(4,4,4-trinitrobutyrate) 120 2.08 1.89 213 1.90 1.99
molz2 | N:N-Bis-(2,2-dinitro-propyl)-4,4,4- 72 186 | 188 194 183 186

trinitro-butyramide

2,2-dinitropropane-1,3-1,3-diol-bis-
mol33 (4.4, 4-trinitro butyrate) 50 1.70 164 179 171 1.58
mol34 | Bis-(2,2,2trinitroethyl)-4,4,6,6,8,8- 32 151 | 151 160 170 1.43

hexanitro-undecanedioate

Validation Set
mol35 | 1,1,1,3-tetranitrobutane 33 1.52 1.54| 1.39 1.4( 1.52
mol36 | 1,1,1,6,6,6-hexanitro-3-hexene 17 1.23 1.37 1.06 1.04 1.09
mol37 | Methylene-bis-N,N'-(2,2,2- 9 095 | 099 091 073 o068

trinitroacetamide)
mol38 | 5,5,5-trinitropentanone-2 125 2.10 199 183 221 2.09
mol39 | N-(2-propyl)-trinitroacetamide 112 2.05 206 182 1.83 1.89
mol40 | 2,2,2-Trinitroethyl-4,4,4-trinitrobutyrate 18 1.26 1.29| 1.23 1.43 1.34
mol41 | Trinitroethyl-2,2-dinitropropylcarbonats 15 1.18 131 162 1.49 1.60
mol42 | Tris-(2,2,2-trinitroethyl)-orthoformate 7 0.85 0.93| 0.93 0.89 1.06
mol43 | Methylene-bis-(trinitroethyl)-carbamate 27 1.43 145 1.61 1.21 1.13
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mol44 | 2,2 dinitropropyl—4,4,4-trinitrobutyramifle 72

mol45 | Bis-(1,1,1-trinitro-2-propyl)-urea
mol46 | Bis-(2,2,2-trinitroethyl)-succinate
mol47 | Bis-(2,2-dinitropropyl)-oxalate

mol48 | N,N'-bis-(3,3,3-trinitro-propyl)-oxamide
mol49 | 2,2 dinitrobutyl-4,4,4-trinitrobutyramide
Bis-(2,2,2-trinitro-ethyl)-4,4-dinitro-

mol50

ethyl)-4,4-dinitroheptanedioate

Table 2: Descriptors presenting the best linear correlatitis loghsoo, for the whole data set

19
30
227
45
101

68

1.86
1.28
1.48
2.36
1.65
2.00

1.83

1.83
1.61
1.53
2.06
1.62
2.05

1.64

1.7
15
1.6
2.2
1.6
2.0

1.7

R? Descriptors

0.78 Relative number of aromatic bonds

0.78 Oxygen balance (Q) according to Kamlet [7]

0.77 Ratio of number of C atoms on molecular weight

0.77 Relative number of single bonds

0.76 Oxygen balance (OB) according to regulatiofj [2

0.76 Ratio of zero point vibrational energy on tiuenber of atoms

0.76 Ratio of number of occupied electronic levels om tiamber of
atoms

0.76 Relative molecular weight

0.75 Relative number of H atoms

0.73 Ratio of number of H atoms on molecular weight

Table 3: Performances of QSPR models developed forgggbf nitroaliphatic compounds

in this study
Eq. 6 Eq. 8 Eqg. 9 Eqg. 10
R? 0.72 0.88 0.93 0.90
RMSE 0.15 0.17 0.13 0.16
Q300 0.69 0.85 0.90 0.87
Q?0cv 0.69 0.84 0.89 0.87
Q%cv 0.70 0.85 0.90 0.88
Rys 0.03 0.09 0.12 0.12
SDys 0.04 0.07 0.08 0.08
R%xT 0.92 0.81 0.88 0.73
RMSEex 0.15 0.22 0.19 0.29
Q%xT 0.89 0.81 0.86 0.68
RN 0.92 0.78 0.88 0.73
RMSEN 0.15 0.23 0.19 0.30
Q3an 0.89 0.78 0.87 0.68
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1.8
1.3
15
2.3
15
2.1

1.6

2.03
1.79
1.50
2.23
1.80
2.29

1.60



Table 4:Performances of the two more reliable QSPR modelsedeloped for loghge, of

nitroaliphatic compounds in this study and extractel from literature

Models NmoI/Ndesc Rz |RMSE Q2|_oo RZ%x1 | RMSEEexT
Eq. 8 (constitutional descriptoy  50/3 | 0.88| 0.17 | 0.85 | 0.81 0.22
Eq. 9 (all descriptors) 50/4 |0.93| 0.13 | 0.90 | 0.88 0.19
Kamlet [7] 28/1 [0.94] NA | NA |074| NA.
Mullay [8] 41/1 10.82| NA | NA 1070 N.A.
Keshavarz, 2005 [18] 58/5 ]0.85| 0.20 | NA. | NA N.A.
Keshavarz, 2007 [15] 58/4 |0.77| 0.19 | NA. | NA N.A.
Wang [22] 43/13 |0.80| 0.20 | 0.51 | 0.93 0.19

& determined based on the molecules of the datagetere not used for the development of
models in the original work (see supporting infotiom)

® only applicable for C(N&)s;compounds
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