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ABSTRACT 

New quantitative structure property relationships (QSPR) were developed to predict accurately the 

impact sensitivity of nitro compounds from their molecular structures. Such predictive approaches 

represent good alternative to complete experimental testing in development process or for 

regulatory issues (e.g. within the European REACH regulation).  

To achieve highly predictive models, two approaches were used to explore the whole diversity of 

nitro compounds included in a data set of 161 molecules. In a first step, local models, dedicated to 

nitramines, nitroaliphatics and nitroaromatics, were proposed. After that, a global model was 

developed to be applicable for the whole range of the nitro compounds of the data set.   

In both cases, large series of molecular descriptors were calculated from quantum chemically 

calculated molecular structures and multilinear regressions were computed to correlate them with 

experimental impact sensitivities. Both global and local models led to high accuracy in predictions for 

nitramines and nitroaliphatics whereas nitroaromatics revealed more difficult to predict due to their 

complex decomposition mechanisms. 

The proposed models were validated in the perspective of potential regulatory use according to the 

OECD principles, including internal, external validation and the definition of their applicability 

domain. So, they could then be used for prediction either separately or in a consensus approach.  

 

Keywords: Quantitative Structure-Property Relationships; Density Functional Theory; Validation; 

Applicability domain; Impact Sensitivity; Nitro Compounds. 
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INTRODUCTION 

Sensitivity is a critical property of energetic materials as it characterizes the tendency of the material 

to react under the effect of various stimuli: heat, electric spark, friction or impact. In particular, 

impact sensitivity, denoted h50%, expresses the sensitivity of materials to a mechanical impact. It is 

experimentally evaluated by determining the height at which a weight of a defined mass leads to a 

reaction when falling on a material sample, with a 50% level of probability. It is a standard property 

of explosive substances not only when evaluating performances but also for safety considerations, 

since it is part of the regulatory tests within regulatory frameworks, e.g. Globally Harmonized System 

(GHS) [1] or Transport of Dangerous Goods (TDG) [2]. 

To evaluate as early as possible potential safety problems when handling energetic materials, notably 

in development process, the use of computation approaches is of great interest. Computer 

capabilities are in constant increase and developing accurate predictive methods to estimate the 

properties of such compounds is now possible. In particular, Quantitative Structure-Property 

Relationships (QSPR) are increasingly used to predict properties of chemicals [3-10]. This approach 

consists in correlating an experimental property with descriptors of the molecular structure. Such 

models are even recommended into the new European regulation related to the Registration, 

Evaluation, Authorisation and Restriction of Chemicals (REACH) [11] and rules have been defined by 

the Organisation for Economic Co-operation and Development (OECD) to clarify their validation for a 

regulatory use [12]. These rules not only clarify the importance of transparency in the definition of 

the algorithm, but also in the definition of endpoints (including experimental protocols) and domains 

of applicability, as well as in the measures of performances of models (e.g. with an external 

validation to estimate predictivity). Moreover, they encourage their mechanistic interpretation. 

Some QSPR models have been already devoted to impact sensitivity in the past. Kamlet [13,14] 

proposed linear models linking logh50% to the oxygen balance for nitro compounds with high 

correlations but without any external validation. Correlations were also proposed with the charge 

distribution descriptors [15], e.g. empirical molecular electronegativities [16,17], charge of nitro 

groups [18,19], electrostatic potential at the midpoint of the C-NO2 bond (Vmid) [15,20,21],  or the 

dissociation energy of this bond [20,22,23]. These correlations notably highlighted the critical part of 

the C-NO2 bond in the decomposition process of nitro compounds [24].  

In more recent works, multivariate approaches were preferred.  For instance, Nefati [25], Cho [26] 

and Jun [27] used artificial neural networks (ANN) with various descriptors. Li [28] also proposed 

models based on the C-NO2 bond dissociation energy and the oxygen balance. A series of multi linear 

regressions were also proposed by Keshavarz [29-33], based on constitutional descriptors for various 

nitro compounds, or Afanas’ev [34] and Badders [35], with a larger diversity of descriptors. Most of 

these models presented remarkable correlations but their predictive powers were in general not 

evaluated on an external set of molecules.  

Only few models were proposed with a transparent validation on an external set. Morrill [36] 

proposed MLR models based on quantum chemical descriptors issued from semi-empirical 

calculations with only low performances in prediction (56% in relative error). Keshavarz [37] also 

proposed a model dedicated to nitramine, nitroaromatic and nitroaliphatic compounds with a root 
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mean squared deviation in prediction of 23 cm. However, this last model was not checked by internal 

validation tests (neither cross validation, nor Y-randomization). 

In the work of Wang [38], various approaches (MLR, partial least squares and ANN) were used to 

develop models based on electrotopological descriptors to predict the impact sensitivities of 

nitroaromatic, nitramine and nitroaliphatic compounds. High predictive powers were exhibited (up 

to R²ext=0.932, for MLR models) but lack in robustness can be noticed, potentially due to over-

parameterization since models are based on up to 16 descriptors. Moreover, the domains of 

applicability of the models were not considered. Thus, these models do not achieve all OECD 

principles for their validation. 

In this paper, new models were developed with aim to follow all these principles and, then, be 

applicable in a regulatory framework. In particular, multilinear models were proposed to predict the 

impact sensitivities of nitroamine, nitroaliphatic and nitroaromatic compounds using a wide variety 

of descriptors, including quantum chemical descriptors that are expected to allow interpretation in 

terms of chemical reactivity. These models were validated based on a series of internal and external 

validation tests. Nitro compounds were first considered by families to obtain local models and then 

in the same database to achieve a unique global model. 

MATERIALS AND METHODS 

Experimental data set 

This paper aims to correlate the impact sensitivities (h50%) to the chemical structures of nitro 

compounds. Nevertheless, if the chemical mechanisms involved in the initiation of decomposition by 

an impact, at a molecular scale, are linked to chemical structures, experimental conditions and 

physical effects, notably related to granulometry, also influence measurements. Moreover, they are 

thus not completely reproducible, in particular from an apparatus to another [14].  

Therefore, the choice of experimental data is critical since all uncertainties are propagated in the 

final model during the fitting procedure. So, to ensure at best the compatibility between 

experimental values, all experimental impact sensitivities were extracted from a single reference 

[39], collecting the impact sensitivities of nitro compounds obtained from drop weight impact tests. 

In practice, logh50% (with h50% in cm) was considered since it has been successfully used to exhibit 

correlations in previous works [13,14,33,35,38]. 

The data set consisted in 60 nitramines, 50 nitroaliphatics and 51 nitroaromatics, i.e. 161 nitro 

compounds, presented in table 1. To allow the validation of models, it was divided into two sets. A 

training set was used to develop models and a validation set to estimate their predictive power. To 

achieve efficient validation, the validation set should be representative of the chemical diversity of 

molecules in the applicability domain of the model, i.e. included in the training set. Here, the 

partition between sets was done in each family of nitro compounds (nitramines, nitroaliphatics, 

nitroaromatics) to ensure the sufficient representativity of each family in the final model and to 

ensure an adequate number of molecules in each set for the development and validation of specific 

models. Moreover, sets were built to respect same distribution in experimental values in the training 

and validation sets. To this end, molecules were ordered by increasing experimental values in each 
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family and validation molecules were selected regularly (one molecule out of three). The remaining 

molecules constituted the training set.  

Molecular descriptors 

The molecular structures of the 161 nitro compounds of the data set were calculated using the 

density functional theory (DFT) in Gaussian03 package [40]. Geometries were optimized using the 

PBE0 functional [41] and the 6-31+G(d,p) basis set. This method has already been used in QSPR 

studies [42-45]. Moreover it was validated from geometrical and energetic considerations for 

studying the decomposition of nitro compounds [46,47]. Vibrational frequencies were computed at 

same calculation level to ensure that all stable species presented no imaginary frequency. 

These molecular structures were then characterized by a series of descriptors. Four classes of 

descriptors can be considered. Constitutional descriptors exhibit the presence and number of specific 

features of molecules, e.g. numbers of atoms, bonds or chemical groups. Topological descriptors 

describe the 2D structure of the molecule based on its connectivity table. They characterize the size 

and shape of molecules, e.g. the Wiener index is well correlated with the boiling point of alkanes as it 

mathematically represents their degrees of branching [48]. Geometric descriptors stem for the 3D-

structure (e.g. molecular volume). Quantum chemical descriptors include binding, energetic, 

electronic and thermodynamic information. They are particularly useful to characterize the reactivity 

of compounds.  

Here, most of the descriptors resulted from the DFT calculated structures using CodessaPro software 

[49]. Detailed definitions and information about these descriptors can be found in [50]. Additional 

descriptors were also included since they have been identified in previous works to be related to the 

properties (e.g. their heats of decomposition [43,51]) of nitro energetic compounds or to 

characterize some particular features identified in the dataset. Finally, more than 300 descriptors 

were computed for each molecule in this study. 

QSPR modeling 

The QSPR approach relies on the principle that modifications of molecular structures undergo 

modifications of the properties of chemical compounds. It consists in developing mathematical 

relationships between experimental properties and descriptors of the molecular structures. To this 

end, various approaches can be used like genetic algorithms (GA) [52] or artificial neural networks 

(ANN) [53]. In this paper, multi linear regressions were computed. Such models follow the 

mathematic form in Eq. 1. 

∑+=
i

ii XaaY 0              (1) 

where Y is the property to predict, Xi are the molecular descriptors and ai are the corresponding 

regression constants. 

To achieve reliable and meaningful models, the statistical treatment has to select the set of n 

descriptors, among the more than 300 calculated ones, that leads to the development of the most 

predictive model. Here, the so-called “best multi linear regression” procedure (BMLR), as 
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implemented in CodessaPro software, was used. This method, already used successfully for the 

development of predictive models of nitro compounds [45] and described in ref [50], is based on the 

successive addition of descriptors in original two-parameter equations as long as the stability of 

models, evaluated based on the Fisher criterion F, increases. It finally provides the best model for 

each number of descriptors. The final model is chosen as the model presenting the best compromise 

between parameterization (i.e. the number of descriptors) and correlation. 

Internal and external validations 

To evaluate the performances of models, internal and external validations were performed. The 

goodness-of-fitting was first characterized by the coefficient of determination (R²) and the root mean 

squared error (RMSE) between calculated and experimental values for the molecules of the training 

set. The pertinence of each descriptor in the model was checked based on a student t-test at a 95% 

level of confidence. 

Then, the robustness of models was estimated by leave-one-out and leave-many-out cross 

validations (Q²LOO, Q²10CV, Q²5CV). Models were expected to present Q² values close to R² ones. 

Moreover, to ensure against chance correlations, Y-randomization tests [54,55] were computed. The 

values of properties were randomized 500 times and, at each iteration, new models were refitted. 

These new models are expected to present poor correlations compared to original ones. As proposed 

by Rücker et al.[54], chance correlation was considered at a 1% level of probability, by considering 

that the difference between the correlation of the original model and the average correlation of the 

random models issued from Y-randomisation (R²YS) should not exceed 2.3 times the standard 

deviation in R² for the new models (SDYS). 

Lastly, the predictive power of models was characterized by external validation on the correlation 

between predicted and experimental values for the molecules of the validation set. Performances of 

models were clarified based on the root mean square error (RMSEEXT), the R²EXT and Q²EXT coefficients 

obtained from the predictions on the validation set. A summary of used statistical coefficients is 

proposed in table 2. 

Applicability Domain (AD) 

The domain of applicability of a model is the domain in which predictions are reliable. Indeed, by 

construction, a QSPR model is not applicable for all chemicals but only predictions for molecules that 

are similar to the ones of the training set can be considered as reliable.  

In this paper, the domain of applicability of each model was defined by interpolation of the 

molecules of the training set, in the chemical space defined on the descriptors constituting the 

model. The Ambit Discovery software [56] was used to build these applicability domains to include 

95% of the molecules of the training set based on their Euclidean distance to the mean in the 

descriptors space. 

Hence, all external validation statistics have been computed again by excluding the molecules of the 

validation set that did not belong to the applicability domain of the models. These parameters were 

noted RMSEIN, R²IN, Q²IN. 
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Moreover, for final application, it should be noted that models also have to be used in the range of 

experimental property values for the molecules in the training set. So, predictions calculated out of 

this range should be considered with particular attention. 

Partial Least Squares 

To assist discussion, partial least squares (PLS) analyses were also carried out using SIMCA P+ 

software [57]. This method consists in projecting an initial set of intercorrelated descriptors into a 

reduced set of orthogonal variables, called latent variables (LV). By construction, first projection 

represents the maximum of variance in the data set, taking into account the covariance of each 

descriptor with the impact sensitivity and additional projections aim to take into account the 

remaining variance. A LV was considered as necessary if it increased the robustness of the PLS 

analysis by 0.05. This approach allows the representation of the chemical space by plotting molecules 

on a 2D-graph based on the first two LVs (score plot) since these two LVs gathered most part of the 

variance in the dataset. 

RESULTS 

To predict the impact sensitivity of nitro compounds, two strategies were applied in this paper. In a 

first step, local models, dedicated to each family of nitro compounds (nitramines, nitroaliphatics and 

nitroaromatics), were developed. Prediction based on local models was successfully used by Papa et 

al. for the prediction of physico-chemical properties of polybrominated diphenyl ethers [8], Colombo 

et al. for the prediction of aqueous toxicity [58] and by Maunz et al. for chemical toxicity [59]. In 

particular, Colombo et al. proposed an approach based on the partition of the chemical space in 

subsets based on structural parameters (e.g. the number of aromatic rings, the maximum bond order 

for a C atom) and the application of a local model for each identified subset. More recently, 

Buchwald et al. [60] developed a more complex approach for the treatment of various large datasets 

(related to toxicological endpoints), in which the predictions are obtained by linear combination of 

the responses issued from different global and/or local models.  

In a second step, a global model was built, to take into account of the whole diversity of compounds 

in the dataset (nitramines, nitroaliphatics and nitroaromatics) and the performances of this last 

model were compared to the predictions issued from local models. 

Model for nitramines 

The first developed model was dedicated to nitramine compounds. So, the BMLR procedure was 

applied to the 41 ones of the training set that range from 0.70 and 2.51 in logh50%. Models with up to 

seven descriptors were computed and the best compromise between the correlation and the 

number of descriptors in the model was found for the four-parameter equation in Eq. 2.  

avgNavgO

E
NNTOBh ,,1%50 6.271.5006.0017.042.0log +++−=     (2) 

where OB is the oxygen balance as defined in the TDG regulation [61], T1
E is the topological electronic 

index (for all pairs of atoms), NO,avg and NN,avg are the average nucleophilic reactivity indices for a O 

and a N atom, respectively.  
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The presence of the oxygen balance was expected since it has been already proposed to be 

correlated with the impact sensitivity [13,14,19,62]. In this equation, NO,avg and NN,avg are related to 

the reactivity of nitro groups that is critical in the decomposition process of nitro compounds [24]. 

The contribution of topological electronic index T1
E in the model is less important. Nevertheless, it is 

not the most important descriptor, particularly regarding OB with a t-test of -15.5 vs. 5.0 for T1
E. 

The fit of this model (presented in Figure 1) is very good since the correlation between calculated 

and experimental values in the training set is high (R²=0.919, RMSE=0.11). Moreover, the cross 

validation correlation coefficients are close to R² and stable when the partition size increases 

(Q²LOO=0.888, Q²10CV=0.878, Q²5CV=0.867), exhibiting good robustness. The model does not result from 

chance correlation, since the models generated from Y-randomization present low correlations 

(R²YS=0.103, SDYS=0.071). Finally, predictions realized on the 19 nitramines of the validation set are in 

good agreement with experimental values (R²EXT=0.878, Q²EXT=0.853, RMSEEXT=0.16), especially in the 

applicability domain (R²IN=0.845, Q²IN=0.817, RMSEIN=0.16), as demonstrated in Table 3. 

These performances are better than the ones of Wang’s models for nitramines [38] in table 4. In 

particular, correlation is better than his MLR model (R²=0.852). Moreover, the robustness and the 

predictive power of the new model are also significantly higher (Q²LOO=0.888 vs. 0.695, Q²EXT=0.853 

vs. 0.670 and RSMEEXT=0.16 vs. 0.23). These better results, in particular in robustness, can be 

attributed to an over-parameterization of the models of Wang, based on 10 descriptors vs. only 5 in 

the present study for nearly the same number of molecules.  

Model for nitroaliphatics 

A second specific model was developed on the 34 nitroaliphatic compounds of the training set. A 

four-parameter model (in Eq. 3) was proposed to be the best compromise between correlation and 

number of descriptors [63]. 

max,
2

max,2minmax%50 79.45.2807.4018.0438.0log ONOQQ NQPOBh +++−−= −    (3) 

where PQmax-Qmin is the polarity parameter defined as the difference between the maximum and 

minimum charges in the molecule, Q
2

NO2,max is the squared maximum charge for a nitro group 

(calculated from natural population analysis [64]) and NO,max is the maximum nucleophilic reactivity 

index for a O atom. 

OB remains pertinent for the prediction of impact sensitivity of nitroaliphatic compounds. Moreover, 

the regression constants and t-test values for this descriptor are very similar in both models (0.017 

vs. 0.018 and 15.5 vs. 14.8, for Eqs. 2 and 3 respectively). The three other descriptors are quantum 

chemical descriptors. In particular, NO,max and Q
2

NO2,max are related to the electronic and reactivity 

properties of nitro groups, which are critical in the decomposition process of nitro compounds. 

Besides, the electronic properties of nitro groups also strongly influence the last parameter,         

PQmax-Qmin. 

The performances of the model are better than the MLR model of Wang for nitroaliphatic 

compounds [38]. The new equation is more correlated with R²=0.929 (vs. 0.801 for Wang). 

Moreover, the models obtained after Y-randomization demonstrate low correlations (R²YS=0.123 and 
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SDYS=0.076). So, this new model did not result from chance correlation. All property values in the 

training set, which define the AD of the model, ranged between 0.78 and 2.48 (log unit). Its 

predictive power, calculated for the 16 nitroaliphatic molecules of the validation set (see. Figure 2), 

remains high when considering the AD of the model with RSMEIN=0.19. Here again, robustness is 

good (Q²LOO=0.901) when Wang’s models clearly failed (Q²LOO=0.512) due to possible over-

parameterization.   

Model for nitroaromatics 

The last class of compounds in the data set concerned 51 nitroaromatics. A QSPR model was 

developed on the 34 nitroaromatic compounds of the training set. Among the 18 models issued from 

BMLR, the four-parameter equation in Eq. 4 demonstrated the best compromise between correlation 

and parameterization. 

min,minmax,%50 4.257.14.869.04.17log CNLUMO NQBOh −−−+= ε     (4) 

where εLUMO is the energy of the lowest unoccupied molecular orbital (LUMO), BON,max is the 

maximum bond order for a N atom, Qmin is the minimum partial charge and NC,min is the minimum 

nucleophilic reactivity index for a C atom. 

The performances of this model are less important than the ones for nitramines and nitroaliphatics. 

Indeed, correlation and robustness are lower, with R²=0.812 and Q²LOO=0.751, and, due to molecules 

out of the applicability domain, predictivity in terms of RMSEEXT exceeds the domain of values of 

logh50% in the data set. Indeed, RMSEEXT of 3.502 was calculated whereas the values for the molecules 

of the data set are concentrated between 0.70 and 2.51. In particular, the predicted values for 2,4,6-

trinitrobenzonitrile (aro-40) and 2,4,6-trinitrobenzaldoxime (aro-48) are negative and thus non 

physical (-9.67 and -0.59, respectively). These important deviations (clearly shown in Figure 3) made 

the statistical coefficients Q²EXT out of its classic range of values (-71.09). When considering only the 

applicability domain, this coefficient becomes meaningful, even if performances remain low in terms 

of prediction (R²IN=0.541, Q²IN=0.508, RMSEIN=0.32). Besides, the models proposed by Wang [38] for 

nitroaromatics presented similar failure in prediction (R²EXT=0.522, Q²EXT=0.457, RMSEEXT=0.27, for its 

MLR model in Table 4). 

The complexity of the mechanisms involved in the decomposition of nitroaromatic compounds offers 

an explanation to such difficulty. Indeed, different reaction paths have been identified for the 

decomposition of nitroaromatic compounds upon their molecular structures [65]. For instance, 

particular primary paths were exhibited for nitroaromatics presenting a methyl group in ortho 

position to a nitro group [47] compared to nitroaromatics without any ortho groups [46]. Such 

consideration was considered by Kamlet [14] who proposed two models as a function of the 

presence of CH containing groups in ortho position to a nitro leading to good correlations (r=0.97 and 

0.96 for the compounds without and with α-CH linkage, respectively). Besides, similar subdivision 

was proposed in previous work for the prediction of heats of decomposition [45]. These two 

subdivisions were also considered in the present study. However, no reliable model was obtained 

when considering only non-ortho-substituted or only ortho-substituted nitroaromatic compounds. 

The development of a model dedicated to the nitro compounds presenting α-CH linkage was not 
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possible since the number of available data (only 17 compounds) was not sufficient for partition 

between training and validation sets. 

Projection methods, e.g. PLS, are efficient tools to identify specific classes of molecules in databases, 

and were used here to identify possible particular clusters of compounds among nitroaromatics. 

Indeed, the presence of specific groups of molecules in data sets, generally due to particular 

molecular features, could explain the difficulty to achieve reliable models. So, a PLS analysis was 

performed on the entire set of 51 nitroaromatics based on the entire set of descriptors, after 

exclusion of all descriptors presenting missing values or no variance, i.e. 313 descriptors. The score 

plot, in Figure 4, obtained by projection of the molecules on the first two LVs, proposes an illustration 

of the distribution of molecules as a function of the descriptors and their covariance with the impact 

sensitivity. No distinction was observed between ortho and non-ortho substituted compounds as in 

previous works [45], but clusters were identified as a function of other molecular features: number 

of aromatic cycles and presence of a C(NO2)3 fragment. In particular, this last feature could be related 

to a particular decomposition path during the decomposition process. 

To go further in the development of reliable models, a first potential strategy would consist in 

developing different models for each identified clusters in this PLS analysis. Unfortunately, the 

available data set was not large enough. Indeed, the largest cluster contained only 27 molecules, 

which is not sufficient to be divided into sufficiently large training and validation sets.  

In another approach, additional experimental measurements may lead to a dataset producing a 

better distribution of the molecules in the chemical space, by performing. In this paper, the data set 

was extracted from a single reference taken from literature. But, impact sensitivity is very dependent 

on experimental apparatus and other data from other sources may not be consistent. Nevertheless, 

in this paper, the data reported in reference [39] made it possible to extend the data set to 

nitramines and nitroaliphatics, as proposed in the following global analysis.  

Global model 

In the perspective of a more global approach towards the prediction of impact sensitivities of nitro 

compounds, the complete data set was considered. It contained 161 molecules and was balanced 

between the three families of nitro compounds: 61 nitramines, 51 nitroaromatics and 50 

nitroaliphatics. Thus, this data set could be expected to be adapted to the development of a global 

model.   

Moreover, it could allow further predictions for nitroaromatic compounds by introducing additional 

compounds that could better represent the diversity of mechanisms that could be involved in the 

decomposition of nitro compounds as explained in previous section.  

This global model was developed on the entire training set, i.e. 108 molecules. Using the BMLR 

method, regressions with up to 15 descriptors were computed and a five-parameter regression (in 

Eq. 5) was selected. 

2min,%50 15.03011.04.29,42013.060.0log NHavgO nWPSAQNOBh ++−+−=   (5) 
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where OB is the oxygen balance as defined in the TDG regulation [61], NO,avg is the average 

nucleophilic reactivity index for a O atom, Qmin is the minimum partial charge, WPSA3 is the weighted 

partial positive charged surface area (order 3) obtained via calculated Mulliken charges [66] and nNH2 

is the number of amino groups. 

Some chemical interpretation can be highlighted. As in the models for nitramines and nitroaliphatics, 

the significance of OB (t-test=-16.2) is consistent with the correlations made by Kamlet  [13,14] and 

Lothrop [62]. Moreover, NO,avg characterizes the reactivity of the O atoms in nitro groups that are 

central in the decomposition process of nitro compounds. Moreover, if the pertinence of the 

descriptors WPSA3 and Qmin, are less easy to clarify, they are based on the distribution of charge in 

molecules, which is strongly influenced by the presence of nitro groups. Lastly, the presence of the 

number of amino groups did not appear so likely interpretable. Nevertheless, it is the less significant 

descriptor in the equation (t-test=2.6). The development of a model excluding nNH2 was tested but 

the performance of the models decreased, in particular for the amino molecules of the validation set. 

The performances of this model are satisfactory (as presented in figure 5). Indeed, it is not only well 

correlated (R²=0.816) and robust (Q²LOO=0.793), but also predictive (R²EXT=0.759), in particular in its 

applicability domain (R²IN=0.750). In terms of predicted impact sensitivity, predictions between 0.70 

and 2.51 (log unit) can be considered as reliable. This model is more predictive than the global MLR 

model of Wang [38] (R²EXT=0.740). It is less reliable than the models developed previously in this 

paper for nitramines and nitroaliphatics but better than the one for nitroaromatic compounds. The 

same observations can be made for the models of Wang.  

To complete the comparison between local and global models, the difference between the values 

obtained from Eqs. 2-4 and experimental results was computed for the molecules of the validation 

set (taking into account ADs) and a better predictive power was observed for a consensus modelling 

based on local models (R²IN=0.829) than for the global model (R²IN=0.750), as shown in table 5. 

Moreover, it can be noticed that if the predictive power of the global model is significant, it failed for 

nitroaromatic compounds with only R²IN=0.227, contrary to the hope of improvement that could be 

issued from the extension of the dataset in terms of chemical diversity. Local models lead to better 

predictivity than the global one for nitroaliphatics (R²IN=0.877 vs 0.816) and similar results are 

obtained for nitramines (R²IN=0.845 vs 0.835). So, these two approaches lead to the same 

conclusions. In both cases, a failure was observed for nitroaromatic compounds whereas good 

predictions were obtained for nitramines and nitroaliphatics (with higher reliability for local models 

than for the global one, as it could have been expected). 

Finally, theses two approaches are complementary. Indeed, local models give the best predictions for 

some molecules, e.g. for the 1,1,1,3-Tetranitrobutane (ali-35) with an error of 0.12 compared with an 

error of 0.31 for the global model, whereas the global model is more predictive for others, such as 

trinitroethyl-5,5-dinitro-3-nitrazahexanoate (ami-49) and 2,2,2-trinitroethyl-4,4,4-trinitrobutyrate 

(ali-40) with deviations of 0.01 and 0.03 vs. 0.19 and 0.14 for the local models, respectively. So, 

global and local approaches are complementary and they could be used in a consensus by 

considering the prediction from both models to obtain a more robust estimation of the sensitivity of 

studied compounds. 

CONCLUSION 
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In this study, four QSPR models were developed and validated in view of predicting the impact 

sensitivities of nitro compounds, based on multilinear regressions and quantum chemical 

calculations. The data set used was well balanced between three classes of nitro compounds: 

nitramines, nitroaliphatics and nitroaromatics. First, three local models were developed for each of 

the three families. Then, a fourth model was developed on a global approach using all the nitro 

compounds of the data set.  

All models were constructed according to all OECD principles for the validation of QSAR/QSPR 

models for regulatory use. Indeed, the endpoint was clearly defined as the impact sensitivity from 

drop weight impact test. Algorithms were completely defined from the model equations to the 

calculation of initial molecular structures. Moreover, the applicability domain was determined based 

on the chemical space in the training set and performances were characterized by internal and 

external validation procedures to measure the goodness-of-fit, the robustness and the predictive 

power of models. Furthermore, descriptors in models were pertinent from a chemical point of view 

since most of them are related (directly or indirectly) to the properties of nitro groups that are 

critical in the reaction mechanisms involved in the decomposition of nitro compounds. 

For both nitramines and nitroaliphatics, local models demonstrated high performances, in particular 

in terms of predictivity (RMSEIN=0.16 and 0.19 respectively), whereas analysis failed for 

nitroaromatics due to the too large diversity of structures regarding the size of the data set. 

Concerning the global model, it demonstrated significant predictive power with RMSEIN=0.21 in its 

applicability domain. Regarding the predictions of impact sensitivities for nitroaromatics, both local 

and global models failed. Even though the performance of this last model was good, local models 

could be preferred since their performances were higher in the case of nitramines and 

nitroaliphatics. A consensus approach based on both local and global approaches could also be 

pertinent to improve confidence in the predictions. 
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Table 1 – Experimental and predicted impact sensitivities (logh50%) from local and global models (Eqs 2-5) 

ID compounds 

Experimental  Predicted 

Ref. [39]  
Nitramines 

Eq. 2 

Nitroaliphatics 

Eq. 3 

Nitroaromatics 

Eq. 4 

Global 

Eq. 5 

Training set 

ami-01 N,N'-Dinitro-methanediamine 1.11  1.21 - - 1.21 

ami-02 N-Nitro-N-methyl-formamide 2.51  2.52 - - 2.44 

ami-03 Methyl-2,2,2-trinitro-ethylnitramine 0.95  1.00 - - 0.94 

ami-04 Trinitroethyl-nitroguanidine 1.18  1.00 - - 0.99 

ami-05 Cyclotrimethylene-trinitramine 1.41  1.35 - - 1.34 

ami-06 N-Methyl-N,N'-dinitro-1,2-ethanediamine 2.06  2.08 - - 1.89 

ami-07 Trinitroethyl-cyanomethylnitramine 1.04  1.09 - - 1.09 

ami-08 Bis-(2,2,2-trinitroethyl)-nitramine 0.70  0.56 - - 0.60 

ami-09 N,N'-Dimethyl-N,N'-dinitrooxamide 1.90  1.86 - - 1.93 

ami-10 N-Nitro-N-(trinitroethyl)-glycinamide 1.23  1.17 - - 1.53 

ami-11 Cyclotetramethylene-tetranitramine 1.46  1.38 - - 1.28 

ami-12 N,N'-Dinitro-N-[2-(nitramino)ethyl]-1,2-ethanediamine 1.59  1.71 - - 1.73 

ami-13 1,3,3,5,5-Pentanitropiperidine 1.15  1.16 - - 1.07 

ami-14 2,2,2-Trinitroethyl-3',3',3'-trinitropropyl-nitramine 0.78  0.80 - - 0.79 

ami-15 Trinitroethyl-N-ethyl-N-nitro-carbamate 1.28  1.44 - - 1.54 

ami-16 Trinitroethyl-2-methoxy-ethylnitramine 1.62  1.44 - - 1.88 

ami-17 N,N'-3,3-Tetranitro-1,5-pentanediamine 1.54  1.59 - - 1.60 

ami-18 2,2,2-Trinitroethyl-N-(2,2,2-trinitroethyl)-nitramino acetate 0.95  0.91 - - 1.05 

ami-19 2,2,2-Trinitroethyl-4-nitrazavalerate 1.54  1.46 - - 1.55 

ami-20 Trinitropropyle-(2,2-dinitropropyl)-nitramine 1.23  1.20 - - 1.17 

ami-21 2',2',2'-Trinitroethyl-2,5-dinitrazahexanoate 1.18  1.25 - - 1.39 

ami-22 2,2,2-Trinitroethyl-3,3-dinitrobutyl nitramine 1.30  1.20 - - 1.17 

ami-23 N,N'-Dinitro-N,N'-bis[2-(nitramino)ethyl]-1,2-ethanediamine 1.72  1.81 - - 1.87 
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ami-24 2,2-Dinitropropyl-5,5,5-trinitro-2-nitrazapentanoate 1.20  1.29 - - 1.45 

ami-25 2,2,2-Trinitroethyl-2,5,5-trinitro-2-azahexanoate 1.34  1.31 - - 1.39 

ami-26 2,2,2-Trinitroethyl-2,4,6,6-tetranitro-2,4-diazaheptanoate 1.26  1.16 - - 1.28 

ami-27 N,N'-Dinitro-N,N'-bis-(3,3,3-trinitropropyl)-oxamide 0.95  1.06 - - 1.09 

ami-28 2,2,6,9,9-Pentanitro-4-oxa-5-oxo-6-azadecane 1.67  1.67 - - 1.86 

ami-29 N-(2,2-Dinitrobutyl)-N-2,2-trinitro-1-butanamine 1.90  1.92 - - 1.86 

ami-30 N,N'-Dinitromethylene-bis-(4,4,4-trinitro)-butyramide 1.11  1.22 - - 1.31 

ami-31 
1,1,1,5,7,10,14,14,14-Nonanitro-3,12-dioxa-4,11-dioxo-

5,7,10-triazatetradecane 
1.04  1.11 - - 1.13 

ami-32 1,1,1,4,6,6,9,11,11,11-Decanitro-4,8-diazaundecane 1.04  1.12 - - 1.02 

ami-33 1,1,1,3,6,6,9,11,11,11-Decanitro-3,9-diazaundecane 1.00  1.11 - - 0.99 

ami-34 Bis-(2,2,2-trinitroethyl)-3,6-dinitraza-1,7-heptanedioate 1.46  1.38 - - 1.68 

ami-35 Bis-(2,2,2-trinitroethyl)-3,6-dinitraza-1,8-octanedioate 1.46  1.39 - - 1.44 

ami-36 Bis-(trinitroethyl)-5,5-dinitro-2,8-dinitrazanonadioate 1.08  1.26 - - 1.31 

ami-37 1,4-Bis-(5,5,5-trinitro-2-nitrazapentanoate)-2-butyne 1.20  1.32 - - 1.58 

ami-38 
1,1,1,18,18,18-Hexanitro-3,16-dioxa-4,15-dioxo-5,8,11,14-

tetranitrazaoctadecane 
1.28  1.37 - - 1.35 

ami-39 
1,1,1,3,6,6,8,10,10,13,15,15,15-Tridecanitro-3,8,13-

triazapentanedecane 
1.36  1.26 - - 1.05 

ami-40 
2,2-Dinitropropanediol-bis-(5,5-dinitro-2-nitraza-

hexanoate) 
2.14  1.79 - - 1.86 

ali-01 1,1,1,3,5,5,5-Heptanitropentane 0.90  - 0.84 - 0.89 

ali-02 1,1,1,6,6,6-Hexanitro-3-hexyne 0.85  - 0.90 - 0.98 

ali-03 3,3,4,4-Tetranitrohexane 1.90  - 1.89 - 1.96 

ali-04 2,2,4,4,6,6-Hexanitroheptane 1.46  - 1.41 - 1.45 

ali-05 2,2,4,6,6-Pentanitroheptane 1.75  - 1.91 - 1.88 

ali-06 2,2,2-Trinitroethyl-carbamate 1.26  - 1.30 - 1.36 

ali-07 2,2-Dinitro-1,3-propane-diol 2.04  - 2.16 - 1.95 

ali-08 Methyl-2,2,2,-trinitro-ethyl carbonate 1.45  - 1.56 - 1.54 

ali-09 4,4,4-Trinitrobutyramide 1.60  - 1.80 - 1.90 
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ali-10 Bis-(2,2,2 trinitroethyl)-carbonate 1.20  - 1.02 - 0.99 

ali-11 Bis-(trinitroethoxy)-methane 1.23  - 1.24 - 1.19 

ali-12 N,N'-Bis-(2,2,2-trinitroethyl)-urea 1.23  - 1.19 - 1.06 

ali-13 Ethyl-2,2,2-trinitro-ethylcarbonate 1.91  - 1.88 - 1.84 

ali-14 Bis-(trinitroethyl)-oxalate 1.18  - 1.03 - 1.14 

ali-15 Bis-(trinitroethyl)-oxamide 1.11  - 1.18 - 1.15 

ali-16 N-Trinitroehyl-4,4,4-trinitrobutyramide 1.26  - 1.21 - 1.27 

ali-17 1,5-Bis-(trinitroethyl)-biuret 1.38  - 1.19 - 1.21 

ali-18 N-(t-Butyl)-trinitro-acetamide 2.04  - 2.13 - 2.04 

ali-19 1,1,1,7,7,7-Hexanitroheptanone-4 1.53  - 1.51 - 1.45 

ali-20 2,2-Dinitropropyl-trinitrobutyrate 2.18  - 2.01 - 1.75 

ali-21 2,2,2-Trinitroethyl-4,4-dinitrovalerate 1.85  - 1.88 - 1.72 

ali-22 Bis-(2,2-dinitropropyl)-carbonate 2.48  - 2.33 - 1.93 

ali-23 Bis-(trinitropropyl)-urea 1.36  - 1.24 - 1.44 

ali-24 Bis-(trinitroethyl)fumarate 1.15  - 1.38 - 1.36 

ali-25 Trinitroethyl-bis-(trinitroethoxy)-acetate 0.78  - 1.03 - 1.07 

ali-26 4,4,4-Trinitrobutyric anhydride 1.48  - 1.55 - 1.49 

ali-27 2,2,2-Trinitroerhyl-4,4-dinitrohexanoate 2.14  - 2.07 - 1.95 

ali-28 Nitroisobutyl-4,4,4-trinitrobutyrate 2.45  - 2.42 - 2.36 

ali-29 Tetrabis-(2,2,2-trinitro-ethyl)-orthocarbonate 0.85  - 0.86 - 0.83 

ali-30 Methylene-bis-(4,4,4-trinitrobutyramide) 2.05  - 1.92 - 1.78 

ali-31 Ethylene-bis-(4,4,4-trinitrobutyrate) 2.08  - 1.90 - 1.84 

ali-32 N,N'-Bis-(2,2-binitropropyl)-4,4,4-trinitro-butyramide 1.86  - 1.83 - 1.74 

ali-33 2,2-Dinitropropane-1,3-1,3-diol-bis-(4,4,4-trinitrobutyrate) 1.70  - 1.71 - 1.57 

ali-34 
Bis-(2,2,2-trinitroethyl)-4,4,6,6,8,8-hexanitro-

undecanedioate 
1.51  - 1.70 - 1.56 

aro-01 Hexanitrobenzene 1.08  - - 0.96 0.90 

aro-02 Benzotrifuroxan 1.70  - - 1.72 1.60 

aro-03 1,3,5-Trinitrobenzene 2.00  - - 1.81 1.99 
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aro-04 Picric acid 1.94  - - 1.75 1.78 

aro-05 2,4,6-Trinitroresorcinol 1.63  - - 1.49 1.69 

aro-06 2,4,6-Trinitrophloroglucinol 1.43  - - 1.67 1.52 

aro-07 2,3,4,6-Tetranitroaniline 1.61  - - 1.63 1.52 

aro-08 2,4-Dinitroresorcinol 2.47  - - 2.25 2.11 

aro-09 2,4,6-Trinitro-3-aminophenol 2.14  - - 2.04 1.86 

aro-10 1-Hydroxy-3,5-diamino-2,4,6-trinitrobenzene 2.08  - - 2.09 2.06 

aro-11 2,4,6-Trinitrobenzoic acid 2.04  - - 2.07 1.92 

aro-12 2,4,6-Trinitroanisole 2.28  - - 2.36 2.09 

aro-13 1,3-Dimethoxy-2,4,6-trinitrobenzene 2.40  - - 2.44 2.25 

aro-14 2',2',2'-Trinitroethyl-2,4,6-trinitrobenzoate 1.38  - - 1.44 1.42 

aro-15 2',2',2'-Trinitroethyl-3,5-dinitrobenzoate 1.86  - - 1.61 1.57 

aro-16 2',2',2'-Trinitroethyl-3,5-dinitrosalicylate 1.65  - - 1.71 1.54 

aro-17 3-Hydroxy-2,2',4,4',6,6'-hexanitrobiphenyl 1.62  - - 1.73 1.73 

aro-18 3,3'-Dihydroxy-2,2',4,4',6,6'-hexanitrobiphenyl 1.60  - - 1.68 1.65 

aro-19 2,2',4,4',6-Pentanitrobenzophenone 1.73  - - 1.64 1.58 

aro-20 3,3'-Diamino-2,2',4,4',6,6'-hexanitrobiphenyl 2.12  - - 1.95 1.97 

aro-21 2,2',2'',4,4'',6,6',6''-Octanitro-p-terphenyl 1.77  - - 1.79 1.71 

aro-22 2,4,6-Trinitrobenzaldehyde 1.56  - - 1.89 1.90 

aro-23 2,4,6-Trinitrotoluene 2.20  - - 2.22 2.06 

aro-24 1-Dinitromethyl-3-nitrobenzene 2.02  - - 2.01 1.92 

aro-25 2,4,6-Trinitrobenzyl alcohol 1.72  - - 1.78 2.19 

aro-26 2,4,6-Trinitro-m-cresol 2.28  - - 2.03 2.09 

aro-27 1-(2,2,2-Trinitroethyl)-2,4,6-trinitrobenzene 1.11  - - 1.25 1.25 

aro-28 2,4,6-Trinitrostyrene 1.51  - - 1.56 2.03 

aro-29 1-(2,2,2-Trinitroethyl)-2,4-dinitrobenzene 1.49  - - 1.47 1.67 

aro-30 3,5-Dimethyl-2,4,6-trinitrophenol 1.89  - - 2.18 2.35 

aro-31 1-(3,3,3-Trinitropropyl)-2,4,6-trinitrobenzene 1.32  - - 1.47 1.42 

aro-32 3-Methyl-2,2',4,4',6-pentanitrobiphenyl 2.16  - - 2.12 2.17 
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aro-33 Hexanitrostilbene 1.59  - - 1.83 1.86 

aro-34 3,3'-Dimethyl-2,2',4,4',6,6'-hexanitrobiphenyl 2.13  - - 1.91 1.92 

Validation set  

ami-41 N,N'-Dinitro-1,2-ethanediamine 1.53  1.60 - - 1.52 

ami-42 N-Methyl-N-nitro-(trinitroethyl)-carbamate 1.23  1.03 - - 1.30 

ami-43 N,N'-(Bis-2,2,2-trinitroethyl)-N,N'-dinitromethanediamine 0.70  0.73 - - 0.68 

ami-44 N-Methyl-N'-trinitroethyl-N,N'-dinitro-1,2-ethanediamine 1.04  1.26 - - 1.26 

ami-45 
N-Nitro-N-(3,3,3-trinitropropyl)-2,2,2-trinitroethyl 

carbamate 
0.95  0.88 - - 1.05 

ami-46 N-(2,2-Dinitropropyl)-N-2,2-trinitro-1-propanamine 1.46  1.40 - - 1.37 

ami-47 1,7-Dimethoxy-2,4,6-trinitrazaheptane 2.22  2.01 - - 2.39 

ami-48 Bis-(trinitroethyl)-2,4-dinitrazapentanedioate 1.00  0.90 - - 0.98 

ami-49 Trinitroethyl-5,5-dinitro-3-nitrazahexanoate 1.40  1.21 - - 1.41 

ami-50 N-Nitro-N,N'-bis-(trinitropropyl)-urea 1.32  1.10 - - 1.16 

ami-51 Bis-(2,2,2-trinitroethyl)-3-nitrazaglutarate 1.15  1.18 - - 1.30 

ami-52 Bis-(trinitroethyl)-2,4,6-trinitrazaheptanedioate 1.11  0.94 - - 1.05 

ami-53 1,1,1,3,6,9,11,11,11-Nonanitro-3,6,9-triazaundecane 1.08  1.10 - - 1.06 

ami-54 N,N'-Dinitro-N,N'-bis-(3-nitrazabutyl)-oxamide 1.95  1.86 - - 2.01 

ami-55 2,2,4,7,9,9-Hexanitro-4,7-diazadecane 1.86  1.63 - - 1.67 

ami-56 
Bis-(5,5,5-trinitro-3-nitrazapentanoyl)-methylene 

dinitramine 
1.18  1.01 - - 0.94 

ami-57 Bis-(trinitroethyl)-2,5,8-trinitrazanonanedioate 1.23  1.24 - - 1.29 

ami-58 
1,1,1,3,6,9,12,14,14,14-Decanitro-3,6,9,12-

tetrazatetradecane 
1.28  1.30 - - 1.29 

ami-59 2,2,4,7,7,10,12,12-Octanitro-4,10-diazatridecane 1.64  1.68 - - 1.67 

ami-60 2,2,4,7,7,9,12,12-Octanitro-5,9-diazatridecane 1.57  1.71 - - 1.60 

ali-35 1,1,1,3-Tetranitrobutane 1.52  - 1.40 - 1.83 

ali-36 1,1,1,6,6,6-Hexanitro-3-hexene 1.23  - 1.04 - 1.03 

ali-37 Methylene-bis-N,N'-(2,2,2-trinitroacetamide) 0.95  - 0.73 - 0.88 
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ali-38 5,5,5-Trinitropentanone-2 2.10  - 2.21 - 2.00 

ali-39 N-(2-Propyl)-trinitroacetamide 2.05  - 1.83 - 1.80 

ali-40 2,2,2-Trinitroethyl-4,4,4-trinitrobutyrate 1.26  - 1.43 - 1.29 

ali-41 Trinitroethyl-2,2-dinitropropylcarbonate 1.18  - 1.49 - 1.40 

ali-42 Tris-(2,2,2-trinitroethyl)-orthoformate 0.85  - 0.88 - 0.97 

ali-43 Methylene-bis-(trinitroethyl)-carbamate 1.43  - 1.25 - 1.33 

ali-44 2,2-Dinitropropyl–4,4,4-trinitrobutyramide 1.86  - 1.85 - 1.66 

ali-45 Bis-(1,1,1-trinitro-2-propyl)-urea 1.28  - 1.37 - 1.39 

ali-46 Bis-(2,2,2-trinitroethyl)-succinate 1.48  - 1.54 - 1.61 

ali-47 Bis-(2,2-dinitropropyl)-oxalate 2.36  - 2.33 - 1.96 

ali-48 N,N'-Bis-(3,3,3-trinitro-propyl)-oxamide 1.65  - 1.59 - 1.58 

ali-49 2,2-Dinitrobutyl-4,4,4-trinitrobutyramide 2.00  - 2.15 - 1.95 

ali-50 
Bis-(2,2,2-trinitroethyl)-4,4-dinitroethyl-4,4-

dinitroheptanedioate 
1.83  - 1.66 - 1.58 

aro-35 1,2,4,5-Tetranitrobenzene 1.43  - - 1.47 1.43 

aro-36 2,3,4,5,6-Pentanitroaniline 1.18  - - 1.32 1.31 

aro-37 2,4,6-Trinitroaniline 2.25  - - 2.14 1.86 

aro-38 1,3-Diamino-2,4,6-trinitrobenzene 2.51  - - 2.55 1.99 

aro-39 Ammonium picrate 2.13  - - 2.39 1.90 

aro-40 2,4,6-Trinitrobenzonitrile 2.15  - - -9.67 1.93 

aro-41 1,4,5,8-Tetranitronaphthalene 2.00  - - 0.69 1.92 

aro-42 2',2'-Dinitropropyl-2,4,6-trinitrobenzoate 2.33  - - 1.57 1.61 

aro-43 2,2',4,4',6,6'-Hexanitrodiphenylamine 1.68  - - 1.66 1.60 

aro-44 2,2'',4,4',4'',6,6',6''-Octanitro-m-terphenyl 1.80  - - 1.68 1.99 

aro-45 2,2',4,4',6,64-Hexanitrobibenzyl 2.06  - - 1.75 1.55 

aro-46 2,2',2'',4,4',4'',6,6',6''-Nonanitro-m-terphenyl 1.59  - - 1.70 1.92 

aro-47 2,2',2'',4,4'',5',6,6''-Octanitro-p-terphenyl 1.60  - - 1.71 1.71 

aro-48 2,4,6-Trinitrobenzaldoxime 1.62  - - -0.59 1.99 

aro-49 1-(3,3,3-Trinitropropyl)-2,4-dinitrobenzene 1.49  - - 1.74 1.46 
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aro-50 3-Methyl-2,2',4,4',6,6'-hexanitrobiphenyl 1.72  - - 1.81 1.81 

aro-51 2,2',4,4',6,6'-Hexanitrobiphenyl 1.93  - - 1.73 1.88 
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Table 2 – Parameters used to evaluate the performances of QSPR models 
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Table 3 – Performances of QSPR models 

 Nitramines Nitroaliphatics Nitroaromatics Global 

Eq. 2 Eq. 3 Eq. 4 Eq. 5 

nTR 40 34 34 108 

nEXT 20 16 17 53 

R² 0.919 0.929 0.812 0.816 

RMSETR 0.11 0.13 0.16 0.19 

Q²LOO 0.888 0.901 0.751 0.793 

Q²10CV 0.878 0.893 0.743 0.786 

Q²5CV 0.867 0.902 0.751 0.789 

R² YS 0.103 0.123 0.127 0.049 

SDYS 0.071 0.076 0.082 0.028 

R²EXT 0.878 0.876 0.013 0.759 

Q²EXT 0.853 0.863 -71.09a 0.749 

RMSEEXT 0.16 0.19 3.50 0.23 

R²IN 0.845 0.877 0.541 0.750 

Q²IN 0.817 0.871 0.508 0.740 

RMSEIN 0.16 0.19 0.32 0.22 
a value out of the classical range due to non physical prediction values obtained for compounds that 

were finally out of the applicability domain of the model 
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Table 4 – Comparison of the performances of previous and new MLR-based QSPR models 

References Target compounds ntrain nvalid R² Q²LOO R²EXT Q²EXT RMSEEXT 

Wang et al.b Nitramines 45 10 0.852 0.695 0.856 0.670 0.23 

[38] Nitroaliphatics 43 9 0.801 0.512 0.932 0.811 0.19 

 
Nitroaromatics 39 10 0.840 0.529 0.457 0.522 0.27 

 
Nitro compounds 127 29 0.771 0.593 0.715 0.716 0.25 

Present workc Nitramines 40 20 0.919 0.888 0.878 0.853 0.16 

 
Nitroaliphatics 34 16 0.929 0.901 0.876 0.863 0.19 

 
Nitroaromatics 34 17 0.812 0.751 0.013 -71.09a 3.50 

 
Nitro compounds 108 53 0.816 0.793 0.759 0.749 0.23 

a Value out of the classical range due to non physical prediction values obtained for compounds that 

were finally out of the applicability domain of the model 
b Experimental values collected from various literature references, including ref [39].    
c All experimental values collected from ref [39].    
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Table 5 – Predictive powers in the applicability domain (R²in) of the new QSPR models by family of 

nitro compounds 

Models Nitramines Nitroaliphatics Nitroaromatics All 
 

    
 

Local 

Eq. 2 0.845 - - 

0.829 Eq. 3 - 0.877 - 

Eq. 4 - - 0.541 
 

    
 

Global Eq. 5 0.835 0.816 0.227 0.750 
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Figure 1 – Experimental vs. predicted logh50% of nitramine compounds based on Eq. 2 
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Figure 2 – Experimental vs. predicted logh50% of nitroaliphatic compounds based on Eq. 3 
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Figure 3 – Experimental vs. predicted logh50% of nitroaromatic compounds based on Eq. 4 
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Figure 4 – Identification of clusters of compounds from the score plot of PLS analysis on the 

51 nitroaromatic compounds of the data set based on 313 molecular descriptors. The intercalation 

fragments “A” identified in the data set are: -NH-, -CH2-CH2-, -CH=CH-, -(C=O)- or absent (no 

intercalation fragment). 
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Figure 5 – Experimental vs. predicted logh50% of nitro compounds based on Eq. 5 

 


