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Abstract 

The molecular structures of 77 nitroaromatic compounds have been correlated to their thermal 

stability by combining the Quantitative Structure-Property Relationship (QSPR) method with 

the Density Functional Theory (DFT). More than 300 descriptors (constitutional, topological, 

geometrical and quantum chemical) have been calculated and multilinear regressions have 

been performed to find accurate quantitative relationships with experimental heats of 

decomposition (-∆H). In particular, this paper demonstrated the importance of taking into 

account chemical mechanisms within the selection of an adequate experimental data set. A 

reliable QSPR model presenting strong correlation with experiments for both the training  and 

the validation molecular sets (R²=0.90 and 0.84, respectively) has been developed for non-

ortho substituted nitroaromatic compounds. Moreover, its applicability domain was 

determined and the model’s predictivity reached to 0.86 within this applicability domain. To 

our knowledge, this study led to the first QSPR model for the prediction of the thermal 

stability of energetic compounds, developed according to the OECD principles for regulatory 

acceptability. 
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Introduction 

After initiation from various external stimuli (impact, electric discharge, heat), energetic 

materials can undergo to decomposition reactions leading to the release of large amount of 

energy. So, the comprehension of their thermal stability properties is very important in order 

to evaluate not only their explosive power, but also the related hazards during storage, 

transportation and handling [1]. Indeed, many reported (industrial) accidents have been 

caused by the lack of knowledge about decomposition process [2], particularly those 

concerning nitro compounds [3].   

To evaluate the amount of the energy released during the decomposition, calorimetric 

analyses are performed on chemicals. A typical experimental screening test is the differential 

scanning calorimetry (DSC) [1,4-6], which provides heats of decomposition with an error of 

about 5-10% [7].  

Such measurement represents a pre-selection step for substances which may have explosive 

properties according to the Recommendations on the Transport of Dangerous Goods [8] 

which are used in REACH (for “Registration, Evaluation, Authorisation and Restriction of 

Chemicals”) [9] and CLP (for “Classification, labelling and packaging of substances and 

mixtures”) [10] regulations for classification purpose. Within this new European regulatory 

framework dedicated to chemicals, the evaluation of a tremendous number of substances may 

be required in a restricted calendar. Unlikely, the complete experimental characterization of 

chemicals causes not only time, cost and ethical (e.g. animals testing for toxicology and 

ecotoxicology) problems but also hazards for the case of potentially explosive compounds, 

(e.g. nitroaromatic compounds) [11]. In this context, the development of alternative tools, 

notably those issuing from computational chemistry [12], may be useful and is even 

recommended in these regulations for the screening and the prioritization of chemicals for 

experiments.  

Among the available methods, Quantitative Structure-Property Relationships (QSPR) 

represent powerful tools to predict different properties of chemicals. Widely used in biology 

[13,14], toxicology [15,16] and drug design [17,18], their applications for physico-chemical 

properties increased since many years [19,20], particularly for the properties of energetic 

materials [21-32]. Their principle consists in developing a mathematic relationship connecting 

a macroscopic property of a compounds series to microscopic descriptors derived from their 
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molecular structures, using a reliable experimental data set. Once a model is developed and 

validated, it can be used to predict the macroscopic property for other molecules, with close 

structures, not yet characterized and even maybe not yet synthesized. Moreover, it might help 

to understand the investigated phenomena at a molecular scale. To encourage the 

development and use of QSAR/QSPR models, the Organization for Economic Co-operation 

and Development (OECD) introduced recently 5 principles for the validation, for regulatory 

purposes, of these models [33]. They require a defined endpoint, an unambiguous algorithm, a 

defined domain of applicability, appropriate measures of goodness-of-fit, robustness and 

predictivity and a mechanistic interpretation, if possible. Until now, only few QSPR models 

were investigated under these principles [34]. 

Some works were devoted to predict the thermal stability of chromophores [35], polymers 

[36] or ionic liquids [37]. Within the framework of energetic materials, some trends 

connecting the presence of particular functional groups to the decomposition temperatures 

(Tonset) of potentially explosive compounds were highlighted by Grewer in the early nineties 

[38]. The popular CHETAH software, dedicated to the prediction of reactivity hazards, 

estimates a maximum heat of decomposition of chemicals using a Benson’s group 

contribution method [39]. Nevertheless, this quantity cannot be directly compared to 

experimental heats of decomposition since it considers a maximal decomposition of the 

molecule. More recently, Tonset was correlated to the dissociation energies of the weak bonds 

in nitro molecules [27,40].  

To the best of our knowledge, the first QSPR type analysis related to the thermal stability of 

nitroaromatic compounds was realized by Saraf [26], based on 19 differential scanning 

calorimetric data. This study proposed the number of nitro groups (nNO2) as the only variable 

to estimate the decomposition enthalpy (-∆H) with an average error about 8%, an incertitude 

close to the experimental error. More recently, Keshavarz proposed two QSPR models based 

on constitutional descriptors to predict the activation energy of thermolysis of nitroaromatics 

[24] and nitramines [23] with both R²=0.87 in correlation. 

In previous works, we proposed preliminary QSPR models to predict the heat of 

decomposition of 22 nitroaromatic compounds [41-43], the most robust one presenting good 

correlation with experimental data (R²=0.98). Nevertheless, the lack of experimental data 

(only 22 molecules) did not allow the estimation of predictive power and applicability 

domains of the models. 
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This paper deals with the application of an original approach combining the QSPR 

methodology with the Density Functional Theory (DFT) for the prediction of the heat of 

decomposition of a larger series of nitroaromatic compounds (77 molecules), following the 

OECD recommendations for the validation of such predictive models. The chosen quantum 

chemical level of theory (DFT) allows for the optimization of molecular structures and, 

overall, the accurate calculations of a series of chemically-comprehensive descriptors of 

molecular reactivity (e.g. conceptual DFT descriptors) [41,43,42]. Furthermore, the 

importance of the training set selection is demonstrated and its definition will be in relation 

with the subjacent microscopic decomposition mechanisms.   

Materials and methods 

Experimental data set 

The choice of the experimental data set is, of course, a critical point of any QSPR analysis. 

Since experimental conditions may have a strong influence, all experimental values used in 

the fitting procedure should be obtained in the same conditions to ensure, at best, their 

reliability and compatibility. 

In this study, a data set of 77 nitroaromatic compounds was considered. It consists in 

nitrobenzenes derivatives including mono, di and trinitrobenzenes and a large variety of 

substituents (e.g. nitro, carboxylic acids or halogens). All the heats of decomposition (in 

tables 1 and 2) were extracted from a single reference [7] to ensure they were obtained using a 

single protocol. In the present case, a pressure DSC apparatus was used on 1-2 mg samples in 

aluminium cells with a pin-hole (i.e. open sample cells) with a heat rate of 10 K/min.  

Molecular structures 

All molecular structures were calculated using the density functional theory (DFT) with the 

Gaussian03 package [44]. Geometry optimizations were performed using the parameter-free 

PBE0 hybrid functional [45] and the 6-31+G(d,p) basis set. Vibrational frequencies were 

computed at the same theoretical level to ensure that all stable species corresponds to energy 

minima. These molecular structures were then loaded into CodessaPro software [46], 

including information about geometry, atomic charges, molecular orbitals energies and 

vibrational frequencies. More than 300 descriptors were calculated and, in addition, some 

particular external descriptors have been included since their interest has been shown in 
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previous work [41,42]. This is notably the case for the number of nitro groups and some 

conceptual DFT descriptors that have been already correlated successfully with thermal 

stability of similar nitroaromatic compounds [41,42].  

The considered molecular descriptors can be divided into several classes: constitutional, 

topological, geometrical and quantum chemical descriptors. Constitutional descriptors 

characterize the presence and number of specific atoms, groups or bonds in the molecule (e.g. 

number of O atoms, single bonds). Topological indices, like Wiener index, are based on the 

atomic connectivity and give information about the size and branching degree of molecules. 

Geometric descriptors, contrary to the previous classes calculated from 2D-structures, stem 

from the 3D-structure (e.g. molecular volume). Quantum chemical descriptors gather binding, 

formation, molecular orbital energies, thermodynamic and electronic information, like dipole 

moment or polarizability, and descriptors characterizing the charge distribution within the 

molecule (e.g. partial charges). Detailed definitions and information about descriptors can be 

found in [47]. 

Statistical analysis 

Various data mining tools can be used to develop QSPR models, e.g. artificial neural 

networks [48] or genetic algorithms [49]. In this study, multilinear regressions have been 

computed and the final model has the following general mathematic form: 

∑
=

+=
n

i
ii XaaY

1
0         (1) 

where Y is the property to predict, Xi are the molecular descriptors and ai are the 

corresponding regression constants. 

Equations (1) have been obtained using the “best multilinear regression” (BMLR) technique, 

described in [47] and implemented into CodessaPro software. 

The first step of the BMLR analysis consists in reducing the initial set of descriptors by 

rejecting all descriptors with insignificant variance, to ensure that descriptors are not included 

by chance in the model whereas they are not related to the investigated property. At the same 

time, if two descriptors are highly correlated together, only the one presenting the best 

correlation with the property is kept. This step not only prevents against the introduction of 
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inappropriate descriptors, but also makes the analysis faster, since fewer variables have to be 

treated.  

After that, starting from pairs of orthogonal (i.e. not intercorrelated) descriptors, higher rank 

models are computed by including orthogonal descriptors successively as soon as an increase 

in correlation is observed. To the end, the BMLR analysis selects the best models at each rank 

and the final model must be chosen between them. It has to be sufficiently correlated and, at 

the same time, ensure against any over-parameterization, which leads to a loss in predictive 

power for molecules outside the training set.  

In this paper, the “breaking point” rule has been used to manage this problem. This method, 

already successfully used in previous works [22,50,43], consists in analyzing the correlation 

improvement with the number of variables in the model. By plotting the R² values as 

functions of the number of descriptors, an asymptotic behavior was observed and the 

improvement of correlation became less significant after a certain rank (∆R² < 0.02-0.03). At 

this point (“breaking point”), the model is considered as optimal, representing the best 

compromise between correlation and parameterization.   

The robustness and the stability of the models have been evaluated through the square 

correlation coefficient (R²) and the mean absolute error (MAE). The choice of the descriptors 

was confirmed by performing a student’s t-test at a 95% confidence level. Moreover, they 

have been validated internally using the cross-validation technique (R²cv), and externally, 

using a validation set of data (R²valid).  

Finally, the applicability domain of the models, i.e. the domain in which predictions are 

reliable, was investigated. In the present paper, the applicability domain estimation was 

performed based on Euclidean distances in the descriptors space (after a principal component 

analysis pre-processing) using Ambit Discovery software [51]. The applicability domain was 

defined to include 95% of the training set molecules and all predictions within this domain are 

expected to be reliable. This last statement was checked by calculating the correlation 

coefficients (R²in) for the molecules of the validation set inside this applicability domain.   

Results and discussion 

Complete data set 
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In a first step, the whole data set of 77 molecules has been investigated. This data set is 

sufficiently large to be divided into a training and a validation set. In order to keep similar 

distributions for the two ensembles, the entire set was sorted from the smallest to the highest 

values of heat of decomposition and the validation set was composed by the 3rd, 7th, etc. 

molecules. Thus, distributions of both training and validation sets (58 and 19 molecules, 

respectively) are quite similar to the entire one, as shown on figure 1. This ratio makes both 

sets sufficiently important for robust development and validation of the model. Then, the 

BMLR method was applied on the training set (see table 1). Models including up to 

19 descriptors were built. The improvement in R² with the number of descriptors included in 

the model is represented in figure 2. Based on the “breaking point” rule, the following four-

parameter model was considered as the best compromise between correlation and number of 

descriptors. 

-∆H = -282.3 + 333.5 nNO2 – 1214.5 EC,avg + 7.4 α – 275.6 0ICavg   (2) 

where nNO2 is the number of nitro groups, EC,avg the average 1-electron reactivity index for a C 

atom, α  the mean polarizability and 0ICavg the average information content (order 0), a 

topological index. This model presents the advantage to include descriptors directly related to 

thermal stability. In fact, the amount of energy released during decomposition is expected to 

be linked to the loss of nitro groups [52]. It is then pertinent to find the number of these nitro 

groups in the model. Moreover, EC,avg characterizes the reactivity of carbon atoms in the 

molecule and the one connected to leaving nitro groups is expected to be the most reactive in 

the molecule. Besides, nitro groups also influence the electronic properties of nitro groups, 

notably the polarizability.  

This model is significantly correlated with R²=0.84 and quite stable (R²cv=0.81). If it is less 

correlated than our previous work based on 22 molecules (R²=0.98) [43], the distribution of 

experimental data was not as homogeneous as that considered in the present work and the 

single trinitro molecule of the previous set strongly influenced the regression.  

To evaluate the predictive power of this new model, heats of decomposition of the validation 

set were calculated. As shown on figure 3 and table 2, the model gives only low correlation 

with an average deviation of 32% with experiments (R²valid=0.43). In particular, the calculated 

values for 4-fluoro-2-nitrotoluene, 2,4- and 2,6-dinitrobenzoic acids present large errors: 64, 

83 and 206 %, respectively (see table 2). Nevertheless, no molecule of this validation set was 
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excluded from the applicability domain of the model (see table 3). So, the predictive power of 

the model is low within its own applicability domain (R²in=0.43).  

At this point, standard experimental uncertainty is not sufficient to explain the poor predictive 

power of the model. Another factor affecting the accuracy of the model is related to the 

chemical reactivity. Indeed, the decomposition of nitroaromatic compounds is complex. 

Whereas the direct breaking of the carbon nitro bond was sometimes considered as the 

initiation step of decomposition for nitro compounds [40], numerous studies demonstrated 

that more complex reaction paths could be specifically involved in nitroaromatic molecules 

[52], such as ortho-substituted nitrobenzene derivatives (e.g. o-nitrotoluenes [53] and its 

derivatives [54] including 2,4,6-trinitrotoluene [55]).  

For this reason, models have been developed considering non-ortho and ortho nitroaromatic 

compounds separately, i.e. a first model is applicable for compounds presenting no substituent 

in ortho position to the nitro group and a second one for compounds presenting one. So, two 

models have been developed following the protocol previously used for the entire set with 

same division into training and validation sets (in tables 1 and 2). Besides, Storm [56] and 

Kamlet [57] already considered the importance of the substituents in this position by 

distinguishing nitroaromatic explosives with an alpha C-H linkage when reporting 

experimental impact sensitivities and their correlation with the oxygen balance.  

Non-ortho compounds 

A four-parameter model was developed from the 31 non-ortho molecules of the training set: 

-∆H = 0.8 G – 3.8 WPSA1 – 4255.1 Qmax + 26.8 RPCS – 251.2   (3) 

where G is the gravitation index, WPSA1 the weighted positive surface area (from Mulliken 

calculated charges [58]), Qmax the maximal partial charge in the molecule (calculated 

according to Gasteiger’s method [59]) and RPCS the relative positive charged surface area 

(from Zefirov calculated charges [47]). If Qmax is related to the nitrogen atoms in nitro groups, 

the other descriptors are more difficult to link to the decomposition process. G characterizes 

the molecular shape and the mass distribution within the molecule. WPSA1 and RPCS are 

charged partial surface area descriptors, developed to encode the features responsible for the 

polar interactions between molecules. Nevertheless, these last descriptors are related, in a 

certain way, to the distribution of charge within the molecule which is very influenced by 
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nitro groups. So, they are indirectly related to the properties of this group, which is central in 

the decomposition of nitroaromatic compounds. 

This model is strongly correlated with experimental data (R²=0.90) with an average deviation 

of 12%, close to the experimental uncertainty (see figure 4 and table 1). The internal 

validation, by cross-validation, is satisfying with R²cv=0.86. Moreover, it presents good 

predictivity since calculated values are close to experimental ones for the 11 non-ortho 

molecules of the validation set (R²valid=0.84, see table 2). Regarding to experimental 

uncertainty, the performance of this model is satisfying since the predictive power of the 

model reaches even to 0.86 when excluding the molecule determined to be out of the 

applicability domain of the model (see table 3). 

Ortho compounds 

For ortho nitroaromatic compounds, the final model, developed on the 27 molecules of the 

training set, is another four-parameter equation: 

-∆H = 4.1 PNSA1 – 3298.8 RPCG – 56228 NC,min – 1245.5 SZX/ZX + 1117.8 (4) 

where PNSA1 and RPCG are the partial negative charged surface area and the relative 

positive charge (from Zefirov calculated charges), NC,min is the minimum nucleophilic 

reactivity index for a C atom and SZX/ZX (ZX shadow / ZX rectangle) characterizes the 

molecular shape within a ZX plane. The charge related descriptors are the main descriptors in 

this equation. The only descriptor being directly related to the thermal stability is NC,min, 

which is influenced by the electronic properties of nitro groups, so to their reactivity with the 

aromatic ring.  

Concerning the performance of the model, the correlation with experimental data is high 

(R²=0.94) with an average deviation of 17% and the cross-validation procedure exhibits a 

good robustness (R²cv=0.91) but the predictivity is low since calculated values for the 8 ortho 

molecules of the validation set deviate about 44% from experiment (R²valid=0.42).  

In fact, a reliable model was more expected for the non-ortho than for the ortho molecules 

since many different reaction paths exist upon the nature of the substituent in ortho position  

from the nitro group (nitro, alcohol, amino…) [52] whereas all non-ortho nitroaromatic 

compounds follow the same decomposition process, C-NO2 homolysis being evidenced in 

previous theoretical studies [60,61] as the main reaction path (without influence of the 
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substituent nature in meta and para position to the nitro group). Besides the applicability 

domain analysis confirms this observation since the predictive power (R2in) of models 2 

(entire set) and 4 (ortho molecules) are low in their applicability domain, compared to the one 

of model 3 (non-ortho molecules). 

To compare the models developed in this study to previous ones, the heats of decomposition 

of the validation molecules have been calculated using Saraf’s model [26] (based on the only 

number of nitro groups of 19 nitrobenzene derivatives) and to our previous model [43] (based 

on 22 molecules), as shown in  table 2. No satisfactory correlation was exhibited since the 

average deviations are 36% and 46% (R²= 0.53 and 0.37) for Saraf’s model and our previous 

work, respectively. This may be due to the lack of homogeneity in the data sets, which 

moreover consider no or only one trinitro compounds. Besides, these models did not 

distinguished ortho and non-ortho compounds. Finally, the predictive powers of these models 

are very low, even in their respective applicability domains (as shown in table 3). These 

previous models present the same limit as Eq. 2 and 4 by considering different decomposition 

mechanisms in the same data set. So, the knowledge of molecular decomposition paths is a 

critical point for the prediction of nitroaromatics thermal stabilities. 

Accordance with OECD principles 

Our best QSPR model, developed for non-ortho compounds (Eq. 3) follows the five OECD 

principles of validation of QSAR/QSPR models for regulatory use [33]: 

Principle 1: The endpoint is well defined as the heat of decomposition, performed using a 

pressure DSC apparatus with a 10 K/min heat rate on 1-2mg samples in aluminum cells with 

pin-hole [7].  

Principle 2: The model is transparent since it consists in a simple multi-linear equation, 

including four parameters, calculated from well defined DFT-optimized structures at the 

PBE0/6-31+G(d,p) level.  

Principle 3: The model is applicable to all nitrobenzene derivatives, without substituent in 

ortho position to the nitro group, that are included into an applicability domain defined by 

interpolation of the training set 
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Principle 4: The performance of the model was estimated by its correlation in the training set 

(R²=0.90), its robustness by cross validation (R²cv=0.86) and its predictive power into its 

domain of applicability on an external validation set of molecules (R²in=0.86). 

Principle 5: If no mechanistic interpretation can be easily provided from descriptors used in 

the model, the molecular mechanisms were considered during its development and form part 

of the defined applicability domain, since the model is not applicable to ortho-substituted 

compounds (see Principle 3). Indeed, the molecular mechanism involved in the decomposition 

of the target non-ortho substituted nitroaromatic compounds has been characterized from 

density functional theory calculations in previous work [57].  

As this model satisfies all requirements of OECD principles, it could be used as an efficient 

alternative to experimental characterization as a first screening test to evaluate if a target 

nitroaromatic compound may have explosive properties.  

Conclusion 

A set of 77 nitroaromatic compounds was considered aiming to develop a reliable QSPR 

model for the prediction of their heats of decomposition. Molecular structures, calculated at a 

DFT level of theory, were described using more than 300 descriptors. 

Considering the entire set of data led to significant correlation in the training step (R²=0.84) 

but it failed in predicting the heats of decomposition of external molecules (about 32% in 

deviation). If experimental uncertainty (e.g. use of open sample cells) contributed to the lack 

of predictive power, this paper demonstrated that the data set selection had to take into 

account chemical reactivity during the decomposition process.  

Indeed, considering a set of nitro compounds without any ortho substituent to the nitro group 

led to a performant model with significant correlation between calculated and experimental 

heats of decomposition of molecules out of the training set (R²valid=0.84). Besides, within its 

own domain of applicability, the predictivity of this model is very high (R²in=0.86). The 

improvement of accuracy, compared with the model for the entire set, is related to the fact 

that various specific decomposition mechanisms involve when substituents are in ortho 

position from the nitro groups whereas all non-ortho compounds decomposed following the 

same reaction path (homolysis of the C-NO2 bond).  
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Finally, this model is, to our knowledge, the most reliable QSPR model predicting the heat of 

decomposition within the class of nitroaromatic compounds and the first dedicated to 

energetic compounds following all OECD requirements for regulatory use. 
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Table 1. Experimental and calculated heats of decomposition (-∆H) in kJ/mol for the 

molecules of the training set  

molecules Exp [7] Eq. 2 Eq. 3 Eq. 4 
non-ortho compounds 

2-amino-4-nitrophenol 130 238 173 - 
3-nitrotoluene 149 238 212 - 
2-amino-5-nitrophenol 153 201 239 - 
4-nitrotoluene 213 253 192 - 
4-nitrophenol 232 183 235 - 
3-nitroanisole 243 223 288 - 
3-nitrobenzoic acid methyl ester 256 334 277 - 
2,6-dichloro-4-nitroaniline 264 394 284 - 
4-nitrophenetole 270 347 249 - 
4-nitrophenylhydrazine 277 389 279 - 
3-nitrophenol 283 165 227 - 
3-nitrobenzoic acid 289 267 372 - 
4-nitroacetophenone 291 348 343 - 
4-nitrobenzyl alcohol 292 223 272 - 
4-nitrobenzoic acid methyl ester 302 329 264 - 
4-nitro-2-toluidine 306 287 315 - 
4-nitrobenzamide 319 275 321 - 
4-nitrobenzyl chloride 337 675 333 - 
4-nitroaniline 347 298 308 - 
3-nitroaniline 350 302 317 - 
3-nitrophenylacetic acid 358 397 347 - 
4-nitrobenzhydrazide 362 415 335 - 
3-nitroacetoanilide 369 289 394 - 
2-amino-4-nitroanisole 375 339 325 - 
4-nitroacetoanilide 387 343 372 - 
4-nitrobenzoyl chloride 408 463 303 - 
3-nitrocinnamic acid 414 314 417 - 
4-nitrobenzaldehyde 421 495 394 - 
3,5-dinitrobenzonitrile 654 699 698 - 
3,5-dinitrobenzoic acid 674 658 679 - 
3,5-dinitrobenzylchloride 711 682 673 - 

ortho compounds 
5-chloro-2-nitrobenzotrifluoride 40 96 - 7 
2-nitrophenol 123 176 - 172 
2-nitrophenylacetic acid 175 288 - 266 
2-nitrotoluene 182 223 - 211 
2-nitroanisole 230 203 - 276 
2-nitrobenzamide 256 317 - 341 
2-nitrobenzoic acid 271 212 - 247 
2-nitrobenzoic acid methyl ester 274 284 - 285 
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2-nitroaniline 280 267 - 284 
2-nitroacetophenone 308 243 - 244 
2-nitrobenzaldehyde 318 196 - 351 
2-nitrobenzyl alcohol 319 350 - 239 
1-chloro-3,4-dinitrobenzene 342 358 - 331 
2-nitrophenylsulfenyl chloride 344 302 - 276 
4-chloro-2-nitroaniline 349 263 - 312 
2-nitrophenylhydrazine 381 448 - 298 
1,5-dinitro-2,4-difluorobenzene 439 396 - 483 
5-nitrovanillin 450 448 - 491 
2-nitro-5-thiocyanotobenzoic acid 492 718 - 559 
2,4-dinitroaniline 597 520 - 694 
2-nitrobenzhydrazide 598 550 - 463 
2-nitrocinnamic acid 600 620 - 606 
3,4-dinitrotoluene 684 645 - 626 
3,4-dinitrobenzoic acid 701 706 - 803 
2,6-dinitroaniline 719 713 - 619 
2-chloro-3,5-dinitrobenzoic acid 1023 766 - 937 
2,4,6-trinitrotoluene 1223 1149 - 1220 

  R² 0.84 0.90 0.94 
 MAE (%)  23  12 17  
 R²cv 0.81 0.86 0.91 
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Table 2. Experimental and calculated heats of decomposition (-∆H) in kJ/mol for the molecules of the validation set 

 

molecules Exp [7] Eq. 2 Eq. 3 Eq. 4 Saraf [26] Previous works [43] 
non-ortho compounds 

nitrobenzene 161 188 202 - 314 319 
4-nitroanisole 248 248 283 - 314 312 
4-nitrophenylacetic acid 265 291 341 - 314 314 
3-nitroacetophenone 276 338 364 - 314 308 
4-nitrobenzoic acid 284 275 332 - 314 267 
3-nitrobenzamide 311 298 334 - 314 39 
3-nitrobenzyl alcohol 325 259 258 - 314 352 
3-nitrobenzaldehyde 373 297 389 - 314 339 
3-nitrobenzhydrazide 430 722 344 - 627 631 
4-nitrocinnamic acid 506 355 414 - 314 413 
3,5-dinitrobenzamide 736 721 687 - 627 560 

ortho compounds 
4-fluoro-2-nitrotoluene 129 212 - 211 314 354 
2,6-dinitrobenzoic acid 222 681 - 423 627 607 
2-nitroacetoanilide 297 431 - 472 314 80 
4-nitro-3-cresol 345 204 - 203 314 319 
4-chloro-3-nitrobenzoic acid 354 238 - 463 314 325 
2,4-dinitrobenzoic acid 394 306 - 553 314 280 
2,4-dinitrotoluene 632 585 - 607 314 205 
3,4-dinitrobenzylalcohol 685 660 - 683 627 605 
 R²valid 0.43 0.84 0.42 0.53 0.37 
 MAE (%) 32 18 44 36 46 
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Table 3.  Analysis of the applicability domain of QSPR models 

 

 Training set  Validation set 

 R² Nin Nout %in R²in  R²valid Nin Nout %in R²in 

Eq.2 0.84 55 3 95 0.82  0.43 19 0 100 0.43 

Eq.3 0.90 29 2 94 0.88  0.84 10 1 90 0.86 

Eq.4 0.94 26 1 96 0.94  0.42 8 0 100 0.42 

Saraf [26]  0.98 19 0 100 0.98  0.53 17 2 89 0.54 

Previous works [43] 0.98 21 1 95 0.99  0.37 15 4 79 0.24 

Nin= count of molecules into the applicability domain 

Nout= count of molecules out of the applicability domain 

%in= ratio of molecules into the applicability domain 

R²in= predictive power into the applicability domain 
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Figure captions 

 

Figure 1. Distributions of the experimental heat of decomposition in the entire, training and 

validation sets 

 

Figure 2. Number of descriptors versus R² of the models from the BMLR analysis on the 

entire training set. 

 

Figure 3. Experimental versus calculated heats of decomposition (in kJ/mol) of nitroaromatic 

compounds according to Eq. 2 (the molecules of the training and validation sets are 

represented in wide triangles and plain circles respectively).  

 

Figure 4. Experimental versus calculated heats of decomposition (in kJ/mol) of non-ortho 

nitroaromatic compounds according to Eq. 3 (the molecules of the training and validation sets 

are represented in wide triangles and plain circles respectively). 

 


