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Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms

Introduction

After initiation from various external stimuli (impact, electric discharge, heat), energetic materials can undergo to decomposition reactions leading to the release of large amount of energy. So, the comprehension of their thermal stability properties is very important in order to evaluate not only their explosive power, but also the related hazards during storage, transportation and handling [START_REF] Grewer | Thermal Hazards of Chemical Reactions[END_REF]. Indeed, many reported (industrial) accidents have been caused by the lack of knowledge about decomposition process [START_REF] Etchells | Why Reactions Run Away[END_REF], particularly those concerning nitro compounds [START_REF] Gustin | Runaway Reaction Hazards in Processing Organic Nitro Compounds[END_REF].

To evaluate the amount of the energy released during the decomposition, calorimetric analyses are performed on chemicals. A typical experimental screening test is the differential scanning calorimetry (DSC) [START_REF] Grewer | Thermal Hazards of Chemical Reactions[END_REF][START_REF] Jones | Evaluation of systems for use in DSC measurements on energetic materials[END_REF][START_REF] Chervin | Method for estimating decomposition characteristics of energetic chemicals[END_REF][START_REF] Yoshida | Safety of Reactive Chemicals[END_REF], which provides heats of decomposition with an error of about 5-10% [START_REF] Ando | Analysis of differential scanning calorimetric data for reactive chemicals[END_REF].

Such measurement represents a pre-selection step for substances which may have explosive properties according to the Recommendations on the Transport of Dangerous Goods [START_REF]Recommendations on the Transport of Dangerous Goods: Manual of Tests and Criteria[END_REF] which are used in REACH (for "Registration, Evaluation, Authorisation and Restriction of Chemicals") [START_REF]the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)[END_REF] and CLP (for "Classification, labelling and packaging of substances and mixtures") [START_REF]the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures[END_REF] regulations for classification purpose. Within this new European regulatory framework dedicated to chemicals, the evaluation of a tremendous number of substances may be required in a restricted calendar. Unlikely, the complete experimental characterization of chemicals causes not only time, cost and ethical (e.g. animals testing for toxicology and ecotoxicology) problems but also hazards for the case of potentially explosive compounds, (e.g. nitroaromatic compounds) [START_REF] Medard | Les explosifs occasionnels[END_REF]. In this context, the development of alternative tools, notably those issuing from computational chemistry [START_REF] Lewis | Integrating process safety with molecular modeling-based risk assessment of chemicals within the REACH regulatory framework: Benefits and future challenges[END_REF], may be useful and is even recommended in these regulations for the screening and the prioritization of chemicals for experiments.

Among the available methods, Quantitative Structure-Property Relationships (QSPR) represent powerful tools to predict different properties of chemicals. Widely used in biology [START_REF] Gao | Comparative QSAR Analysis of Estrogen Receptor Ligands[END_REF][START_REF] Winkler | The role of quantitative structure -activity relationships (QSAR) in biomolecular discovery[END_REF], toxicology [START_REF] Bradbury | Quantitative structure-activity relationships and ecological risk assessment: an overview of predictive aquatic toxicology research[END_REF][START_REF] Selassie | Comparative QSAR and the Radical Toxicity of Various Functional Groups[END_REF] and drug design [START_REF] Grover | Quantitative structure-property relationships in pharmaceutical research -Part 2[END_REF][START_REF] Grover | Quantitative structure-property relationships in pharmaceutical research -Part 1[END_REF], their applications for physico-chemical properties increased since many years [START_REF] Cocchi | Development of Quantitative Structure-Property Relationships Using Calculated Descriptors for the Prediction of the Physicochemical Properties (n D , ρ, bp, ε, η) of a Series of Organic Solvents[END_REF][START_REF] Katritzky | QSPR: the Correlation and Quantitative Prediction of Chemical and Physical-Properties from Structure[END_REF], particularly for the properties of energetic materials [START_REF] Katritzky | QSPR Analysis of Flash Points[END_REF][START_REF] Katritzky | QSPR modeling of flash points: An update[END_REF][START_REF] Keshavarz | Simple method for prediction of activation energies of the thermal decomposition of nitramines[END_REF][START_REF] Keshavarz | Predicting activation energy of thermolysis of polynitro arenes through molecular structure[END_REF][START_REF] Rice | A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules[END_REF][START_REF] Saraf | Prediction of reactive hazards based on molecular structure[END_REF][START_REF] Theerlynck | Towards improved models to rationalize and estimate the decomposition temperatures of nitroalkanes, nitramines and nitric esters[END_REF][START_REF] Afanas'ev | Comparative characteristics of some experimental and computational methods for estimating Impact Sensitivity Parameters of Explosives[END_REF][START_REF] Toghiani | Prediction of physicochemical properties of energetic materials[END_REF][START_REF] Politzer | Computational Prediction of Standard Gas, Liquid, and Solid-Phase Heats of Formation and Heats of Vaporization and Sublimation[END_REF][START_REF] Politzer | An electrostatic interaction correction for improved crystal density prediction[END_REF][START_REF] Pospisil | A possible crystal volume factor in the impact sensitivities of some energetic compounds[END_REF]. Their principle consists in developing a mathematic relationship connecting a macroscopic property of a compounds series to microscopic descriptors derived from their molecular structures, using a reliable experimental data set. Once a model is developed and validated, it can be used to predict the macroscopic property for other molecules, with close structures, not yet characterized and even maybe not yet synthesized. Moreover, it might help to understand the investigated phenomena at a molecular scale. To encourage the development and use of QSAR/QSPR models, the Organization for Economic Co-operation and Development (OECD) introduced recently 5 principles for the validation, for regulatory purposes, of these models [START_REF]Principles for the Validation, for Regulatory Purposes, of (Quantitative) Structure-Activity Relationship Models[END_REF]. They require a defined endpoint, an unambiguous algorithm, a defined domain of applicability, appropriate measures of goodness-of-fit, robustness and predictivity and a mechanistic interpretation, if possible. Until now, only few QSPR models were investigated under these principles [START_REF] Papa | Development, Validation and Inspection of the Applicability Domain of QSPR Models for Physicochemical Properties of Polybrominated Diphenyl Ethers[END_REF]. Some works were devoted to predict the thermal stability of chromophores [START_REF] Figueiredo | Chemometric analysis of nonlinear optical chromophores structure and thermal stability[END_REF], polymers [START_REF] Yu | Prediction of the thermal decomposition property of polymers using quantum chemical descriptors[END_REF] or ionic liquids [START_REF] Kroon | Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids[END_REF]. Within the framework of energetic materials, some trends connecting the presence of particular functional groups to the decomposition temperatures (T onset ) of potentially explosive compounds were highlighted by Grewer in the early nineties [START_REF] Grewer | The influence of chemical structure on exothermic decomposition[END_REF]. The popular CHETAH software, dedicated to the prediction of reactivity hazards, estimates a maximum heat of decomposition of chemicals using a Benson's group contribution method [START_REF] Benson | Thermochemical kinetics. 2nd edn[END_REF]. Nevertheless, this quantity cannot be directly compared to experimental heats of decomposition since it considers a maximal decomposition of the molecule. More recently, T onset was correlated to the dissociation energies of the weak bonds in nitro molecules [START_REF] Theerlynck | Towards improved models to rationalize and estimate the decomposition temperatures of nitroalkanes, nitramines and nitric esters[END_REF][START_REF] Saraf | Application of Transition State Theory for Thermal Stability Prediction[END_REF].

To the best of our knowledge, the first QSPR type analysis related to the thermal stability of nitroaromatic compounds was realized by Saraf [START_REF] Saraf | Prediction of reactive hazards based on molecular structure[END_REF], based on 19 differential scanning calorimetric data. This study proposed the number of nitro groups (n NO2 ) as the only variable to estimate the decomposition enthalpy (-∆H) with an average error about 8%, an incertitude close to the experimental error. More recently, Keshavarz proposed two QSPR models based on constitutional descriptors to predict the activation energy of thermolysis of nitroaromatics [START_REF] Keshavarz | Predicting activation energy of thermolysis of polynitro arenes through molecular structure[END_REF] and nitramines [START_REF] Keshavarz | Simple method for prediction of activation energies of the thermal decomposition of nitramines[END_REF] with both R²=0.87 in correlation.

In previous works, we proposed preliminary QSPR models to predict the heat of decomposition of 22 nitroaromatic compounds [START_REF] Fayet | On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility[END_REF][START_REF] Fayet | On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations[END_REF][START_REF] Fayet | QSPR Modeling of Thermal Stability of Nitroaromatic Compounds: DFT vs. AM1 Calculated Descriptors[END_REF], the most robust one presenting good correlation with experimental data (R²=0.98). Nevertheless, the lack of experimental data (only 22 molecules) did not allow the estimation of predictive power and applicability domains of the models. This paper deals with the application of an original approach combining the QSPR methodology with the Density Functional Theory (DFT) for the prediction of the heat of decomposition of a larger series of nitroaromatic compounds (77 molecules), following the OECD recommendations for the validation of such predictive models. The chosen quantum chemical level of theory (DFT) allows for the optimization of molecular structures and, overall, the accurate calculations of a series of chemically-comprehensive descriptors of molecular reactivity (e.g. conceptual DFT descriptors) [START_REF] Fayet | On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility[END_REF][START_REF] Fayet | QSPR Modeling of Thermal Stability of Nitroaromatic Compounds: DFT vs. AM1 Calculated Descriptors[END_REF][START_REF] Fayet | On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations[END_REF]. Furthermore, the importance of the training set selection is demonstrated and its definition will be in relation with the subjacent microscopic decomposition mechanisms.

Materials and methods

Experimental data set

The choice of the experimental data set is, of course, a critical point of any QSPR analysis.

Since experimental conditions may have a strong influence, all experimental values used in the fitting procedure should be obtained in the same conditions to ensure, at best, their reliability and compatibility.

In this study, a data set of 77 nitroaromatic compounds was considered. It consists in nitrobenzenes derivatives including mono, di and trinitrobenzenes and a large variety of substituents (e.g. nitro, carboxylic acids or halogens). All the heats of decomposition (in tables 1 and 2) were extracted from a single reference [START_REF] Ando | Analysis of differential scanning calorimetric data for reactive chemicals[END_REF] to ensure they were obtained using a single protocol. In the present case, a pressure DSC apparatus was used on 1-2 mg samples in aluminium cells with a pin-hole (i.e. open sample cells) with a heat rate of 10 K/min.

Molecular structures

All molecular structures were calculated using the density functional theory (DFT) with the Gaussian03 package [START_REF] Frisch | Gaussian Inc[END_REF]. Geometry optimizations were performed using the parameter-free PBE0 hybrid functional [START_REF] Adamo | Toward reliable density functional methods without adjustable parameters: The PBE0 model[END_REF] and the 6-31+G(d,p) basis set. Vibrational frequencies were computed at the same theoretical level to ensure that all stable species corresponds to energy minima. These molecular structures were then loaded into CodessaPro software [START_REF] Codessapro | University of Florida[END_REF], including information about geometry, atomic charges, molecular orbitals energies and vibrational frequencies. More than 300 descriptors were calculated and, in addition, some particular external descriptors have been included since their interest has been shown in previous work [START_REF] Fayet | On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility[END_REF][START_REF] Fayet | On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations[END_REF]. This is notably the case for the number of nitro groups and some conceptual DFT descriptors that have been already correlated successfully with thermal stability of similar nitroaromatic compounds [START_REF] Fayet | On the use of descriptors arising from the conceptual density functional theory for the prediction of chemicals explosibility[END_REF][START_REF] Fayet | On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations[END_REF].

The considered molecular descriptors can be divided into several classes: constitutional, topological, geometrical and quantum chemical descriptors. Constitutional descriptors characterize the presence and number of specific atoms, groups or bonds in the molecule (e.g. number of O atoms, single bonds). Topological indices, like Wiener index, are based on the atomic connectivity and give information about the size and branching degree of molecules.

Geometric descriptors, contrary to the previous classes calculated from 2D-structures, stem from the 3D-structure (e.g. molecular volume). Quantum chemical descriptors gather binding, formation, molecular orbital energies, thermodynamic and electronic information, like dipole moment or polarizability, and descriptors characterizing the charge distribution within the molecule (e.g. partial charges). Detailed definitions and information about descriptors can be found in [START_REF] Karelson | Molecular Descriptors in QSAR/QSPR[END_REF].

Statistical analysis

Various data mining tools can be used to develop QSPR models, e.g. artificial neural networks [START_REF] Gasteiger | Neural Networks in Chemistry[END_REF] or genetic algorithms [START_REF] Leardi | Genetic algorithms in chemometrics and chemistry: a review[END_REF]. In this study, multilinear regressions have been computed and the final model has the following general mathematic form:

∑ = + = n i i i X a a Y 1 0 (1)
where Y is the property to predict, X i are the molecular descriptors and a i are the corresponding regression constants.

Equations ( 1) have been obtained using the "best multilinear regression" (BMLR) technique, described in [START_REF] Karelson | Molecular Descriptors in QSAR/QSPR[END_REF] and implemented into CodessaPro software.

The first step of the BMLR analysis consists in reducing the initial set of descriptors by rejecting all descriptors with insignificant variance, to ensure that descriptors are not included by chance in the model whereas they are not related to the investigated property. At the same time, if two descriptors are highly correlated together, only the one presenting the best correlation with the property is kept. This step not only prevents against the introduction of inappropriate descriptors, but also makes the analysis faster, since fewer variables have to be treated.

After that, starting from pairs of orthogonal (i.e. not intercorrelated) descriptors, higher rank models are computed by including orthogonal descriptors successively as soon as an increase in correlation is observed. To the end, the BMLR analysis selects the best models at each rank and the final model must be chosen between them. It has to be sufficiently correlated and, at the same time, ensure against any over-parameterization, which leads to a loss in predictive power for molecules outside the training set.

In this paper, the "breaking point" rule has been used to manage this problem. This method, already successfully used in previous works [START_REF] Katritzky | QSPR modeling of flash points: An update[END_REF][START_REF] Katritzky | QSAR study of mosquito repellents using Codessa Pro[END_REF][START_REF] Fayet | QSPR Modeling of Thermal Stability of Nitroaromatic Compounds: DFT vs. AM1 Calculated Descriptors[END_REF], consists in analyzing the correlation improvement with the number of variables in the model. By plotting the R² values as functions of the number of descriptors, an asymptotic behavior was observed and the improvement of correlation became less significant after a certain rank (∆R² < 0.02-0.03). At this point ("breaking point"), the model is considered as optimal, representing the best compromise between correlation and parameterization.

The robustness and the stability of the models have been evaluated through the square correlation coefficient (R²) and the mean absolute error (MAE). The choice of the descriptors was confirmed by performing a student's t-test at a 95% confidence level. Moreover, they have been validated internally using the cross-validation technique (R² cv ), and externally, using a validation set of data (R² valid ).

Finally, the applicability domain of the models, i.e. the domain in which predictions are reliable, was investigated. In the present paper, the applicability domain estimation was performed based on Euclidean distances in the descriptors space (after a principal component analysis pre-processing) using Ambit Discovery software [51]. The applicability domain was defined to include 95% of the training set molecules and all predictions within this domain are expected to be reliable. This last statement was checked by calculating the correlation coefficients (R² in ) for the molecules of the validation set inside this applicability domain.

Results and discussion

Complete data set

In a first step, the whole data set of 77 molecules has been investigated. This data set is sufficiently large to be divided into a training and a validation set. In order to keep similar distributions for the two ensembles, the entire set was sorted from the smallest to the highest values of heat of decomposition and the validation set was composed by the 3 rd , 7 th , etc. molecules. Thus, distributions of both training and validation sets (58 and 19 molecules, respectively) are quite similar to the entire one, as shown on figure 1. This ratio makes both sets sufficiently important for robust development and validation of the model. Then, the BMLR method was applied on the training set (see table 1). Models including up to 19 descriptors were built. The improvement in R² with the number of descriptors included in the model is represented in figure 2. Based on the "breaking point" rule, the following fourparameter model was considered as the best compromise between correlation and number of descriptors.

-∆H = -282.3 + 333.5 n NO2 -1214.5 E C,avg + 7.4 α -275.6 0 IC avg [START_REF] Etchells | Why Reactions Run Away[END_REF] where n NO2 is the number of nitro groups, E C,avg the average 1-electron reactivity index for a C atom, α the mean polarizability and 0 IC avg the average information content (order 0), a topological index. This model presents the advantage to include descriptors directly related to thermal stability. In fact, the amount of energy released during decomposition is expected to be linked to the loss of nitro groups [START_REF] Brill | Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives[END_REF]. It is then pertinent to find the number of these nitro groups in the model. Moreover, E C,avg characterizes the reactivity of carbon atoms in the molecule and the one connected to leaving nitro groups is expected to be the most reactive in the molecule. Besides, nitro groups also influence the electronic properties of nitro groups, notably the polarizability.

This model is significantly correlated with R²=0.84 and quite stable (R² cv =0.81). If it is less correlated than our previous work based on 22 molecules (R²=0.98) [START_REF] Fayet | QSPR Modeling of Thermal Stability of Nitroaromatic Compounds: DFT vs. AM1 Calculated Descriptors[END_REF], the distribution of experimental data was not as homogeneous as that considered in the present work and the single trinitro molecule of the previous set strongly influenced the regression.

To evaluate the predictive power of this new model, heats of decomposition of the validation set were calculated. As shown on figure 3 At this point, standard experimental uncertainty is not sufficient to explain the poor predictive power of the model. Another factor affecting the accuracy of the model is related to the chemical reactivity. Indeed, the decomposition of nitroaromatic compounds is complex.

Whereas the direct breaking of the carbon nitro bond was sometimes considered as the initiation step of decomposition for nitro compounds [START_REF] Saraf | Application of Transition State Theory for Thermal Stability Prediction[END_REF], numerous studies demonstrated that more complex reaction paths could be specifically involved in nitroaromatic molecules [START_REF] Brill | Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives[END_REF], such as ortho-substituted nitrobenzene derivatives (e.g. o-nitrotoluenes [START_REF] Chen | A Computational Study on the Kinetics and Mechanism for the Unimolecular Decomposition of o-Nitrotoluene[END_REF] and its derivatives [START_REF] Fayet | A theoretical study of the decomposition mechanisms on substituted ortho-nitrotoluenes[END_REF] including 2,4,6-trinitrotoluene [START_REF] Cohen | Mechanism of Thermal Unimolecular Decomposition of TNT (2,4,6-Trinitrotoluene): A DFT Study[END_REF]).

For this reason, models have been developed considering non-ortho and ortho nitroaromatic compounds separately, i.e. a first model is applicable for compounds presenting no substituent in ortho position to the nitro group and a second one for compounds presenting one. So, two models have been developed following the protocol previously used for the entire set with same division into training and validation sets (in tables 1 and 2). Besides, Storm [START_REF] Storm | Sensitivity Relationships in Energetic Materials[END_REF] and Kamlet [START_REF] Kamlet | The relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic explosives[END_REF] already considered the importance of the substituents in this position by distinguishing nitroaromatic explosives with an alpha C-H linkage when reporting experimental impact sensitivities and their correlation with the oxygen balance.

Non-ortho compounds

A four-parameter model was developed from the 31 non-ortho molecules of the training set:

-∆H = 0.8 G -3.8 WPSA1 -4255.1 Q max + 26.8 RPCS -251.2

where G is the gravitation index, WPSA1 the weighted positive surface area (from Mulliken calculated charges [START_REF] Mulliken | Electronic Population Analysis on LCAO-MO Molecular Wave Functions[END_REF]), Q max the maximal partial charge in the molecule (calculated according to Gasteiger's method [START_REF] Gasteiger | Iterative partial equalization of orbital electronegativity--a rapid access to atomic charges[END_REF]) and RPCS the relative positive charged surface area (from Zefirov calculated charges [START_REF] Karelson | Molecular Descriptors in QSAR/QSPR[END_REF]). If Q max is related to the nitrogen atoms in nitro groups, the other descriptors are more difficult to link to the decomposition process. G characterizes the molecular shape and the mass distribution within the molecule. WPSA1 and RPCS are charged partial surface area descriptors, developed to encode the features responsible for the polar interactions between molecules. Nevertheless, these last descriptors are related, in a certain way, to the distribution of charge within the molecule which is very influenced by nitro groups. So, they are indirectly related to the properties of this group, which is central in the decomposition of nitroaromatic compounds.

This model is strongly correlated with experimental data (R²=0.90) with an average deviation of 12%, close to the experimental uncertainty (see figure 4 and table 1). The internal validation, by cross-validation, is satisfying with R² cv =0.86. Moreover, it presents good predictivity since calculated values are close to experimental ones for the 11 non-ortho molecules of the validation set (R² valid =0.84, see table 2). Regarding to experimental uncertainty, the performance of this model is satisfying since the predictive power of the model reaches even to 0.86 when excluding the molecule determined to be out of the applicability domain of the model (see table 3).

Ortho compounds

For ortho nitroaromatic compounds, the final model, developed on the 27 molecules of the training set, is another four-parameter equation:

-∆H = 4.1 PNSA1 -3298.8 RPCG -56228 N C,min -1245.5 S ZX/ZX + 1117.8

where PNSA1 and RPCG are the partial negative charged surface area and the relative positive charge (from Zefirov calculated charges), N C,min is the minimum nucleophilic reactivity index for a C atom and S ZX/ZX (ZX shadow / ZX rectangle) characterizes the molecular shape within a ZX plane. The charge related descriptors are the main descriptors in this equation. The only descriptor being directly related to the thermal stability is N C,min , which is influenced by the electronic properties of nitro groups, so to their reactivity with the aromatic ring.

Concerning the performance of the model, the correlation with experimental data is high (R²=0.94) with an average deviation of 17% and the cross-validation procedure exhibits a good robustness (R² cv =0.91) but the predictivity is low since calculated values for the 8 ortho molecules of the validation set deviate about 44% from experiment (R² valid =0.42).

In fact, a reliable model was more expected for the non-ortho than for the ortho molecules since many different reaction paths exist upon the nature of the substituent in ortho position from the nitro group (nitro, alcohol, amino…) [START_REF] Brill | Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives[END_REF] whereas all non-ortho nitroaromatic compounds follow the same decomposition process, C-NO 2 homolysis being evidenced in previous theoretical studies [START_REF] Brill | Influence of the substituent on the major decomposition channels of the NO2 group in para-substituted nitrobenzenes: a tandem mass spectrometric study[END_REF][START_REF] Fayet | Theoretical Study of the Decomposition Reactions in Substituted Nitrobenzenes[END_REF] as the main reaction path (without influence of the substituent nature in meta and para position to the nitro group). Besides the applicability domain analysis confirms this observation since the predictive power (R 2 in ) of models 2 (entire set) and 4 (ortho molecules) are low in their applicability domain, compared to the one of model 3 (non-ortho molecules).

To compare the models developed in this study to previous ones, the heats of decomposition of the validation molecules have been calculated using Saraf's model [START_REF] Saraf | Prediction of reactive hazards based on molecular structure[END_REF] (based on the only number of nitro groups of 19 nitrobenzene derivatives) and to our previous model [START_REF] Fayet | QSPR Modeling of Thermal Stability of Nitroaromatic Compounds: DFT vs. AM1 Calculated Descriptors[END_REF] (based on 22 molecules), as shown in table 2. No satisfactory correlation was exhibited since the average deviations are 36% and 46% (R²= 0.53 and 0.37) for Saraf's model and our previous work, respectively. This may be due to the lack of homogeneity in the data sets, which moreover consider no or only one trinitro compounds. Besides, these models did not distinguished ortho and non-ortho compounds. Finally, the predictive powers of these models are very low, even in their respective applicability domains (as shown in table 3). These previous models present the same limit as Eq. 2 and 4 by considering different decomposition mechanisms in the same data set. So, the knowledge of molecular decomposition paths is a critical point for the prediction of nitroaromatics thermal stabilities.

Accordance with OECD principles

Our best QSPR model, developed for non-ortho compounds (Eq. 3) follows the five OECD principles of validation of QSAR/QSPR models for regulatory use [START_REF]Principles for the Validation, for Regulatory Purposes, of (Quantitative) Structure-Activity Relationship Models[END_REF]: Principle 1: The endpoint is well defined as the heat of decomposition, performed using a pressure DSC apparatus with a 10 K/min heat rate on 1-2mg samples in aluminum cells with pin-hole [START_REF] Ando | Analysis of differential scanning calorimetric data for reactive chemicals[END_REF].

Principle 2: The model is transparent since it consists in a simple multi-linear equation, including four parameters, calculated from well defined DFT-optimized structures at the PBE0/6-31+G(d,p) level.

Principle 3: The model is applicable to all nitrobenzene derivatives, without substituent in ortho position to the nitro group, that are included into an applicability domain defined by interpolation of the training set Principle 4: The performance of the model was estimated by its correlation in the training set (R²=0.90), its robustness by cross validation (R² cv =0.86) and its predictive power into its domain of applicability on an external validation set of molecules (R² in =0.86).

Principle 5: If no mechanistic interpretation can be easily provided from descriptors used in the model, the molecular mechanisms were considered during its development and form part of the defined applicability domain, since the model is not applicable to ortho-substituted compounds (see Principle 3). Indeed, the molecular mechanism involved in the decomposition of the target non-ortho substituted nitroaromatic compounds has been characterized from density functional theory calculations in previous work [START_REF] Kamlet | The relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic explosives[END_REF].

As this model satisfies all requirements of OECD principles, it could be used as an efficient alternative to experimental characterization as a first screening test to evaluate if a target nitroaromatic compound may have explosive properties.

Conclusion

A set of 77 nitroaromatic compounds was considered aiming to develop a reliable QSPR model for the prediction of their heats of decomposition. Molecular structures, calculated at a DFT level of theory, were described using more than 300 descriptors.

Considering the entire set of data led to significant correlation in the training step (R²=0.84) but it failed in predicting the heats of decomposition of external molecules (about 32% in deviation). If experimental uncertainty (e.g. use of open sample cells) contributed to the lack of predictive power, this paper demonstrated that the data set selection had to take into account chemical reactivity during the decomposition process. Indeed, considering a set of nitro compounds without any ortho substituent to the nitro group led to a performant model with significant correlation between calculated and experimental heats of decomposition of molecules out of the training set (R² valid =0.84). Besides, within its own domain of applicability, the predictivity of this model is very high (R² in =0.86). The improvement of accuracy, compared with the model for the entire set, is related to the fact that various specific decomposition mechanisms involve when substituents are in ortho position from the nitro groups whereas all non-ortho compounds decomposed following the same reaction path (homolysis of the C-NO 2 bond).

Finally, this model is, to our knowledge, the most reliable QSPR model predicting the heat of decomposition within the class of nitroaromatic compounds and the first dedicated to energetic compounds following all OECD requirements for regulatory use. 
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 3 Figure 3. Experimental versus calculated heats of decomposition (in kJ/mol) of nitroaromatic compounds according to Eq. 2 (the molecules of the training and validation sets are represented in wide and plain circles respectively).
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 4 Figure 4. Experimental versus calculated heats of decomposition (in kJ/mol) of non-ortho nitroaromatic compounds according to Eq. 3 (the molecules of the training and validation sets are represented in wide triangles and plain circles respectively).

  the applicability domain of the model (see table3). So, the predictive power of the model is low within its own applicability domain (R² in =0.43).

	and table 2, the model gives only low correlation
	with an average deviation of 32% with experiments (R² valid =0.43). In particular, the calculated

values for 4-fluoro-2-nitrotoluene, 2,4-and 2,6-dinitrobenzoic acids present large errors: 64, 83 and 206 %, respectively (see table 2). Nevertheless, no molecule of this validation set was excluded from

Table 1 .

 1 Experimental and calculated heats of decomposition (-∆H) in kJ/mol for the

	molecules of the training set				
	molecules	Exp [7]	Eq. 2	Eq. 3	Eq. 4
		non-ortho compounds			
	2-amino-4-nitrophenol	130	238	173	-
	3-nitrotoluene	149	238	212	-
	2-amino-5-nitrophenol	153	201	239	-
	4-nitrotoluene	213	253	192	-
	4-nitrophenol	232	183	235	-
	3-nitroanisole	243	223	288	-
	3-nitrobenzoic acid methyl ester	256	334	277	-
	2,6-dichloro-4-nitroaniline	264	394	284	-
	4-nitrophenetole	270	347	249	-
	4-nitrophenylhydrazine	277	389	279	-
	3-nitrophenol	283	165	227	-
	3-nitrobenzoic acid	289	267	372	-
	4-nitroacetophenone	291	348	343	-
	4-nitrobenzyl alcohol	292	223	272	-
	4-nitrobenzoic acid methyl ester	302	329	264	-
	4-nitro-2-toluidine	306	287	315	-
	4-nitrobenzamide	319	275	321	-
	4-nitrobenzyl chloride	337	675	333	-
	4-nitroaniline	347	298	308	-
	3-nitroaniline	350	302	317	-
	3-nitrophenylacetic acid	358	397	347	-
	4-nitrobenzhydrazide	362	415	335	-
	3-nitroacetoanilide	369	289	394	-
	2-amino-4-nitroanisole	375	339	325	-
	4-nitroacetoanilide	387	343	372	-
	4-nitrobenzoyl chloride	408	463	303	-
	3-nitrocinnamic acid	414	314	417	-
	4-nitrobenzaldehyde	421	495	394	-
	3,5-dinitrobenzonitrile	654	699	698	-
	3,5-dinitrobenzoic acid	674	658	679	-
	3,5-dinitrobenzylchloride	711	682	673	-
		ortho compounds			
	5-chloro-2-nitrobenzotrifluoride	40	96	-	7
	2-nitrophenol	123	176	-	172
	2-nitrophenylacetic acid	175	288	-	266
	2-nitrotoluene	182	223	-	211
	2-nitroanisole	230	203	-	276
	2-nitrobenzamide	256	317	-	341
	2-nitrobenzoic acid	271	212	-	247
	2-nitrobenzoic acid methyl ester	274	284	-	285