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Abstract: 
The European regulation on chemicals (REACh) places emphasis on reduction of systematic toxicity 
testing, thus fostering development of alternative methods. Consequently, we analysed acute toxicity 
data gathered by the Japanese Ministry of Environment for three species belonging to three different 
trophic levels (i.e., Pseudokirchneriella subcapitata 72-hour EC50, Daphnia magna 48-hour EC50 
and Oryzias latipes 96-hour LC50). This paper investigates the relationships between the chemical 
structure and both the toxicity of the chemicals and the cross-species differences in sensitivity. The 
physicochemical properties of the chemicals were represented by the categories they belonged to in 
several widely-used categorisation schemes implemented by the freely available OECD (Q)SAR 
Toolbox and by quantitative molecular descriptors using DRAGON software. The outputs of these 
software products were analysed and compared in terms of quality of prediction and biological 
interpretation. Amongst the categorisations implemented by the OECD Toolbox, those focussing on 
bioaccumulation or biotransformation appeared to be the most interesting in terms of environmental 
prediction on a whole set of chemicals, in particular as the predicted biotransformation half-life is 
strongly dependent on hydrophobicity. In predicting toxicity towards each species, simple linear 
regression on logP performed better than PLS regression of toxicity on a very large set of molecular 
descriptors. However, the predictions based on the interspecies correlations performed better than the 
QSAR predictions. The results in terms of cross-species comparisons encourage the use of test 
strategies focussing on reducing the number of tests on fish. 
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1 Introduction 

According to the European Community Regulation No 1272/2008 (CLP) on classification, labelling 

and packaging of substances and mixtures, substances are classified according to their acute aquatic 

toxicity and environmental fate. Acute aquatic toxicity data are usually determined using an algal 
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species 72- hour EC50, a crustacean species 48-hour EC50, and a fish 96-hour LC50. Most of the time, 

these tests are carried out according to the Organisation for Economic Cooperation and Development 

(OECD) test guidelines (i.e. TG201 (OECD, 2006), TG202 (OECD, 2004), and TG203 (OECD, 

1992)). Countries outside Europe have also adopted similar regulations: in Japan for instance, the 

Ministry of the Environment is responsible for evaluating toxicity of chemicals on ecosystems, and 

recommends the use of tests involving aquatic organisms such as Oryzias latipes (fishes) or Daphnia 

magna (daphnia), in addition to algae data (Furuhama et al., 2010). The choice of these three trophic 

levels (primary producers, primary and secondary consumers) is considered to be relevant in order to 

protect aquatic ecosystems (Wei et al., 2006). Furthermore, algae, daphnids, and fish are often used for 

cross-species comparisons of sensitivity (de Roode et al., 2006; Dom et al., 2010; Henegar et al., 2011; 

Lessigiarska et al., 2004; Tremolada et al., 2004; Weyers et al., 2000).  

The European regulation on chemicals (REACh) places emphasis on the reduction of systematic 

toxicity testing, thus fostering the development of alternative methods, such as testing strategies or 

statistical methods based on existing data. In this context, Quantitative Structure-Activity 

Relationships (QSAR) methods relate the physicochemical properties of chemicals with their toxicity 

on the basis that similar compounds have similar biological activities or properties (Tropsha, 2010). 

Many QSAR models predict toxicity with specific descriptors such as the n-octanol/water partition 

coefficient (logP) alone (Hsieh et al., 2006), associated with a chemical class as in EcoSAR software, 

or, depending on the mechanism of toxic action (Duchowicz and Ocsachoque, 2009), associated with 

other parameters such as the energy of the lowest unoccupied molecular orbital (Chen et al., 2007; 

Huang et al., 2007), or the dissociation constant, Hammett Co constant, index of valence molecular 

connectivity, perimeter of the efficient cross-section of molecule, and melting point (Shigeoka et al., 

1988). Other QSAR models rely on generating large sets of descriptors and using statistical methods to 

reduce dimensionality and identify underlying structural factors influencing toxicity. QSAR models 

have been made available in various software packages (de Roode et al., 2006). 
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Structure-Activity Relationships (SAR) can take the physicochemical properties into account by 

considering the functional or chemical class of molecules. Besides considering the overall level of 

toxicity of a chemical towards each species, studying species’ relative sensitivity is particularly 

relevant in the regulatory context of environmental risk assessment and when considering the 

avoidance of tests on vertebrates (Hoekzema et al., 2006; Hutchinson et al., 2003; Jeram et al., 2005). 

Tremolada et al. (2004) developed Quantitative Inter-specific Chemical Activity Relationships 

(QICAR) for pesticides on algae, daphnids, and fish. The toxicity was related to the functional and 

chemical class of the compounds and the physicochemical properties also contributed to predicting the 

toxicity towards one species based on the toxicity towards a different species.  

In this study, we analysed an ecotoxicity database produced by the Japanese Ministry of Environment 

and available online (Japanese Ministry of Environment, 2010).  

Additional data on physicochemical properties of these chemicals were collected in two different 

ways. The chemicals were classified according to several widely-used classifications implemented by 

the OECD (Q)SAR Toolbox. Quantitative physicochemical properties were obtained by calculating a 

set of molecular descriptors using DRAGON software and the results were compared with those 

obtained using the OECD Toolbox. Since the latter is freely available for download and a free version 

of the DRAGON descriptors is available online (Tetko et al., 2005; VCCLAB. Virtual Computational 

Chemistry Laboratory, 2005) our methodology can be easily adopted and reproduced by all the 

stakeholders involved in regulations on chemicals.   

The aims of this paper are two-fold. Firstly, it studies structure-activity relationships between the acute 

toxicity of the chemicals for three aquatic species and the physicochemical properties. Secondly, it 

relates the cross-species differences in sensitivity with the physicochemical properties.   
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2 Material and methods 

2.1 Data Set 

The data in the ecotoxicity database were gathered by the Japanese Ministry of Environment and 

available online (Japanese Ministry of Environment, 2010). The tests were conducted according to the 

OECD test guidelines performed under Good Laboratory Practices (GLP). We selected the toxicity 

data of organic chemicals that had been collected in tests in or after 2002. Data from tests using 

vehicles to dissolve the test substance were discarded. 

We studied the acute toxicity expressed as the EC50 or LC50 for three aquatic species from three 

different trophic levels, one alga, one daphnid and one fish. The species selected were 

Pseudokirchneriella subcapitata, previously known as Selenastrum capricornutum (72-hour EC50, 

calculated from average specific growth rate), Daphnia magna (48-hour EC50), and Ozyrias latipes 

(96-hour LC50) also known as the Japanese Medaka. P. subcapitata and D. magna are two widely 

used and relatively sensitive species; the sensitivity of O. latipes is comparable to that of other fish 

species (Wei et al., 2006). The toxicity information for all three species was available for 85 chemicals 

in the database. The Chemical Abstract Service (CAS) registration numbers and names of these 

chemicals are reported in Table 1 of the supplementary material. The final dataset is chemically 

heterogeneous, containing aliphatic and aromatic organic chemicals, and excluding mixtures. At least 

eight of the chemicals are pesticides (CAS numbers 117-80-6, 132-27-4, 556-61-6, 56-23-5, 88-85-7, 

93-15-2, 127-90-2, 504-24-5. There were no highly hydrophobic chemicals, as the MlogP 

(Moriguchi’s octanol-water partition coefficient obtained by multiple regression analysis on 13 

structural parameters (Moriguchi et al., 1992)) ranged from -1.4 to 4.5 and the AlogP (Ghose-Crippen 

octanol-water partition coefficient based on hydrophobic atomic constants measuring the lipophilic 

contribution of atoms in the molecule (Viswanadhan et al., 1989)) ranged from -0.9 to 5.8. 
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The two-dimensional structure of the chemicals was coded in SMILES notation (Weiniger, 1988; 

Weiniger et al., 1989) in the database. This was used as an input in the freely available OECD Q(SAR) 

Toolbox version 2.0 (OECD, 2010) and used for profiling the chemicals according to several 

predefined classification schemes implemented by the Toolbox. The chemicals were thus profiled 

according to their organic functional groups, the EcoSAR Classification, the 

mutagenicity/Carcinogenicity alerts by Benigni/Bossa, the US EPA Categorization, the Lipinski Rule, 

the OASIS Acute Toxicity Mode Of Action, the OASIS protein binding, the superfragment profiling, 

the OASIS DNA Binding, the Estrogen Receptor binding, the bioaccumulation metabolism alerts 

(BioWIN MITI fragments, developed to predict biodegradation by microorganisms (Tunkel et al., 

2000), with some additional classes, US EPA), and the primary biotransformation half-lives in fish 

(US EPA), developed partly to improve design of bioaccumulation and toxicity testing (Arnot et al., 

2009). These categorisations were used in order to analyse the relationships between the presence of 

particular structural fragments and the toxicity of chemicals. Attention is drawn to the fact that, even 

inside a given categorisation scheme, a chemical can belong to several classes. In view of further 

analysis, the data extracted from the Toolbox was thus recoded into a table where each column was a 

binary variable indicating whether a given chemical belonged or not to a given class (one column for 

each chemical class). 

The three-dimensional models of the molecules were built with hydrogens and their stereochemistry 

coincides with the chirality information displayed by the website ChemIDplus lite 

(http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp). Molecules with less than 6 rotatable bonds 

were submitted to systematic conformational analysis otherwise they were submitted to a 

conformational search by Boltzman jump (50000 steps, T=300 K, RMSD=60 degrees). At the end of 

this search, a conjugate gradients minimization was performed with the MM2 force field and the 

MOPAC/AM1 semiempirical quantum mechanical calculations were used to generate atom partial 

charges and further optimize molecular conformations. All the described procedures were carried out 

in vacuum thanks to the software VegaZZ (Pedretti et al., 2004). A set of 797 two- and three-
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dimensional molecular descriptors were calculated using the software DRAGON version 5.3 licensed 

by Talete srl, Milan (Italy). 

2.2 Statistical analysis  

The analyses aimed to answer three main questions: 

- In the database, are there overall cross-species differences in sensitivity? 

- How are classes defined according to chemical structure related to the toxicity of chemicals 

and to the cross-species differences? 

- When considering a large set of DRAGON descriptors, how are these related to the 

categorisations implemented by the OECD (Q)SAR Toolbox, to toxicity, and to cross-species 

differences in sensitivity? 

2.2.1 Data set verification 

Basic properties of the EC50 and LC50 distributions were investigated to ensure the relevance of our 

statistical analysis. Distribution of log(EC50) or log(LC50) of each species was checked for large gaps 

(exceeding 15% of the total range) between two consecutive values (Tropsha, 2010). 15% is a 

relatively high threshold but accounts for the small size of the dataset.  

The EC50 or LC50 values were compared with the estimated solubility (logS) calculated with 

software ALOGPS version 2.1 (Tetko et al., 2001; VCCLAB, 2005). 

2.2.2 Cross-species comparison 

The interspecies toxicity correlations were measured by the square of Pearson’s correlation coefficient 

between the log(EC50) or log(LC50) of all pairs of species. 

The most and the least sensitive species towards each chemical were identified. χ² tests on the counts 

of most or least sensitive species were used to determine whether overall sensitivity was significantly 
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different between species. The proportion of chemicals which were more toxic towards P. subcapitata 

or D. magna than towards O. latipes was also computed. 

2.2.3 Relationships between chemical class and toxicity 

Either Student’s t-test or the Mann-Whitney test on the log(EC50) or log(LC50) was used to determine 

whether the toxicity of a chemical class was significantly different from that of the rest of the 

chemicals. Student’s t-test was used when the log(EC50) or log(LC50) was distributed normally in 

each population; the Mann-Whitney test was used if this were not the case. Normality in 

subpopulations was assessed by the Shapiro-Wilk test.  

The chemical class was cross-tabulated against the most sensitive species and against the least 

sensitive species, thus producing one contingency table for each chemical class. Fisher’s exact test was 

used to determine whether sensitivity to a given chemical class was significantly different between 

trophic levels, taking into account the possible overall cross-species differences in sensitivity. This test 

was repeated for each chemical class.  The expected counts under the null hypothesis of no association 

between the chemical classes and the species’ relative sensitivity were compared with the observed 

counts in order to identify which species (either one or two) were the most sensitive. 

2.2.4 Relationships between molecular descriptors and toxicity 

The molecular descriptors were first of all explored by Principal Component Analysis (PCA) in order 

to identify the main structural differences between the chemicals in the dataset that are highlighted by 

the set of descriptors, and to relate these with the categorisations implemented by the OECD (Q)SAR 

Toolbox (with Mann-Whitney’s test), with the toxicity (test of nullity of Pearson’s correlation 

coefficient), and the species’ relative sensitivity (Fisher’s exact test).  

Either χ² tests or Fisher’s exact tests were used to identify the chemical classes that were characteristic 

of specific subgroups revealed by the PCA. Fisher’s exact test was used when the χ² approximations 

could have been incorrect. 
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The database was randomly split into a training set and a test set (for external validation) with a three 

to one size ratio (63 chemicals in the training set and 22 chemicals in the test set, Table 1 of the 

supplementary material), using random sampling without replacement. The distribution of log(EC50) 

or log(LC50) in both sets was then compared and a Mann-Whitney test was performed for each 

endpoint to check that the values in the test set were not significantly different from the ones in the 

training set. Partial Least Squares (PLS) regression was performed on the training set on the whole set 

of molecular descriptors. Prediction quality was evaluated with the cross-validated R² with 7 segments 

and with the external validation Q²ext calculated using the average log(EC50) or log(LC50) on the test 

set (Schüürmann et al., 2008). Linear regression of toxicity on two different calculations of the logP 

(MlogP and AlogP) and their squares was performed. The quality was evaluated by calculating the 

coefficient of determination (R²), both on the training and on the test set (Q²ext). 

All calculations and graphs were made with R software version 2.12.0 (R Development Core Team, 

2010), using contributed packages FactoMineR and pls. 

3 Results 

3.1 Data set verification  

72-hour EC50 for P. subcapitata ranged from 0.0064 mg/L to 82 mg/L. 48-hour EC50 for D. magna 

ranged from 0.016 mg/L to 87 mg/L. 96-hour LC50 for O. latipes ranged from 0.031 mg/L to 90 

mg/L. All the chemicals could thus be ranked in one of the classes “very toxic”, “toxic”, or “harmful” 

defined for the classification and labelling of chemicals according to the European Community 

Regulation No 1272/2008 (CLP). Subsequent calculations were performed on the logarithm of EC50 

or LC50. 

For all three species, there were no gaps in log(EC50) or log(LC50) greater than 15% of the total 

log(EC50) and log(LC50) ranged. 
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The log(EC50) and log(LC50) expressed in mol/L were compared with the estimated logS for 81 of 

the chemicals (the logS could not be estimated for the four remaining chemicals). The calculated EC50 

or LC50 values were greater than the estimated solubility for two chemicals for P. subcapitata (0.43 

log units in the worst case) and for two chemicals for O.latipes (0.12 log units in the worst case). 

According to these comparisons, we found no reason to discard any of the substances due to solubility 

aspects.  

3.2 General cross-species comparisons 

The interspecies toxicity correlation was highest between  D. magna and O. latipes (R²=68.3%). The 

correlation was smaller between the toxicity towards P. subcapitata and D. magna (R²=53.8%) and 

between the toxicity towards P. subcapitata and O. latipes (R²=41.3%) (Figure 1).  

Insert Figure 1 

For each chemical, the EC50 or LC50 were compared between the three species in order to identify 

the most and least sensitive species. There was one tie in the most sensitive species and two ties in the 

least sensitive species; in those cases the calculations were done for all possible combinations (two 

combinations for the test on the most sensitive species and four combinations for the test on the least 

sensitive species).  

All three species were about equally often the most sensitive species (χ² =2.85 or 2.14, p-value=0.24 

or 0.34, depending on the assignment in case of ties). D. magna was rarely the least sensitive species 

(to 14 or 15 chemicals) (χ² =10.54 to 13.01, p-value=0.0015 to 0.0051, depending on the assignment in 

case of ties). Toxicity towards P. subcapitata or D. magna was higher than towards O. latipes for 

75.3% of the chemicals.  
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3.3 Chemical class and toxicity 

The OECD (Q)SAR Toolbox identified a total of 243 classes. Only classes that comprised at least 

10% of the whole dataset were selected: as there were 85 chemicals in the dataset, classes with 9 to 76 

chemicals were selected for further analysis. Some categorisations did not yield classes with sufficient 

chemicals: the Lipinski rule and the superfragment profiling were not utilised in this study. In the 

dataset, 80 out the 85 chemicals were bioavailable according to the Lipinski rule and 77 had no 

superfragment. Some of the classes were identical in several categorisations, such as phenols or 

anilines (with some differences in the US EPA classification).  

3.3.1 Degree of toxicity according to the chemical class 

Few chemical classes show a difference in toxicity towards any of the species considered 

independently. The ratios of EC50 or LC50 in each class on EC50 or LC50 out of the class are 

reported for each species in the columns entitled “Toxicity of chemical class” in Table 1. Ratios 

greater than 1 indicate that the class is less toxic towards a given species than the other chemicals in 

the data set. The ratios also allow cross-species comparisons to a certain extent, as one class of 

chemicals can be more toxic than the other classes towards one particular species.  

Insert Table 1 

Only the categorisations regarding bioaccumulation and biotransformation yielded classes of 

chemicals that were both represented by a sufficient number of chemicals to be tested and were 

significantly more or less toxic than the other chemicals in the dataset (i.e. presented a significant 

difference in log(EC50) or log(LC50)). The chemicals with methyl substituents on an aromatic ring 

(identified in the bioaccumulation metabolism alerts) were less toxic towards all species than other 

chemicals (EC50 or LC50 2.7 to 6.0 times greater). Chemicals with an unsubstituted phenyl group 

were less toxic towards D. magna and O. latipes. The chemicals with several fused 6C aromatic rings 

(bioaccumulation metabolism alert) were more toxic towards P subcapitata (EC50 11 times smaller) 
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and D. magna (EC50 7.1 times smaller) than other chemicals. Seven out of nine of these chemicals 

were naphthalene derivatives. The biotransformation half-lives were undetermined for two chemicals, 

and were moderate (1 to 10 days), fast (0.1 to 1 day) or very fast (under 0.1 day) for all other 

chemicals. Chemicals with moderate biotransformation half-lives (i.e. longer half-lives than the other 

chemicals) were more toxic towards all species (EC50 or LC50 3.4 to 4.7 times smaller) and 

chemicals with very short half-lives were less toxic towards D. magna and O. latipes (EC50 or LC50 

2.8 times greater). Closer inspection of the 19 chemicals with very short biotransformation half-li ves 

revealed that 8 of them belonged to the aniline class (in the EcoSAR classification), and none of them 

were neutral organics (in the EcoSAR classification) or basesurface narcotics (OASIS Acute Toxicity 

Mode Of Action).  

A more specific toxicity of chemicals with methyl groups towards O. latipes was also shown. Also, 

chemicals with an alkyl substituent on an aromatic ring were less toxic than other chemicals towards 

P. subcapitata.  

3.3.2 Cross-species differences in sensitivity 

Each chemical class was cross-tabulated separately against the most sensitive species and against the 

least sensitive species, thus producing one contingency table for each chemical class. Fisher’s exact 

test was applied to each contingency table to determine whether sensitivity to a given chemical class 

was significantly different between the species. To account for ties, the test was carried out on all 

combinations for each chemical class. The number of tests with a p-value smaller than 0.05 are 

reported in Table1 in two separate columns for the test on the most sensitive species and on the least 

sensitive species. When p<0.05, the observed counts were compared with the counts expected under 

the null hypothesis of no associations between the structural categories and ecotoxicological 

sensitivity in order to determine which species was (or were) significantly the most sensitive. The 

significantly most sensitive species to each chemical class are reported in Table 1 in the third to last 

and in the last column. 
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When considering the most sensitive species, there was a difference in sensitivity between the three 

species for 7 out of the 40 chemical classes investigated. O. latipes was the most sensitive species 

towards chemicals with an impaired OH or NH2 group (Estrogen Receptor binding) or a methyl 

metabolism alert (BioWIN MITI fragment) (most sensitive species to 41% or 45% of the chemicals 

with methyl alerts and most sensitive to only 15% of the chemicals without methyl alerts). D. magna 

was the most sensitive species towards arenes (most sensitive species to 45% of the arenes and most 

sensitive to only 12.5% or 17% of the non-arenes). In the organic functional group classification, 

arenes are chemicals with one to three six-membered aromatic rings bearing diverse substituents. D. 

magna was also the least sensitive towards chemicals with a methylene functional group (most 

sensitive species to only 14% of the chemicals with methylene and most sensitive to 44% or 46% of 

the chemicals without methylene). P. subcapitata was less sensitive than the other species towards 

chemicals with an alkyl substituent on an aromatic ring (BioWIN MITI fragment) (most sensitive 

species to only 11% of the chemicals with an alkyl substituent on an aromatic ring and most sensitive 

to 45% of the other chemicals). 

When considering the least sensitive species, there was a difference in sensitivity between the three 

species for phenols, which were identified as a class by four of the categorisations investigated. P. 

subcapitata was shown to be less sensitive towards phenols. Because of ties in EC50 or LC50, it was 

unclear whether P. subcapitata was less sensitive towards chemicals with a methyl functional group 

and whether O. latipes was less sensitive to anilines (in the US EPA classification) and more sensitive 

towards chemicals with a carbon with four single bonds and no hydrogen (BioWIN MITI fragment).  

The chemical classes for which the toxicity towards P. subcapitata or D. magna was notably higher 

than towards O. latipes in over 85% of cases were identified. This was observed only for a small 

number of chemical classes: chemicals with aryl halide organic functional groups (aromatic chloride 

BioWIN MITI fragments for example), and chemicals with several fused 6-carbon aromatic rings 

(BioWIN MITI fragments). 
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3.4 Molecular descriptors and toxicity  

3.4.1 Exploratory analysis 

Amongst the set of 797 molecular descriptors, the ten that correlated most with the log(EC50) or 

log(LC50) of each species are shown in Table 2. The signification of the descriptors is reported in 

Table 2 of the supplementary material. The descriptor that correlated best with the toxicity was the 

squared logP (AlogP² with P. subcapitata: r=-0.43; MlogP² with D. magna: r=-0.57; MlogP² with O. 

latipes: r=-0.53). AlogP was amongst the top ten for P. subcapitata and both MlogP and AlogP were 

amongst the top ten for D. magna and O. latipes. As expected, toxicity of chemicals increased with 

hydrophobicity.  

Insert Table 2 

Principal Component Analysis (PCA) was applied to the 797 standardised molecular descriptors in 

order to identify the main structural differences between the chemicals in the dataset that are 

highlighted by the set of descriptors, without focussing on toxicity. Pearson’s correlation coefficient 

was calculated between the four first principal components and the two different calculations of the 

logP and their squared values that were included in the molecular descriptors. The correlations 

between MlogP, MlogP², AlogP, and AlogP² and the first and fourth principal components were all 

significantly different from zero (p<0.05) and relatively high with the fourth component (Pearson’s r 

ranged from 0.34 to 0.52 with the first component and ranged from 0.50 to 0.56 for the fourth 

component). This shows that hydrophobicity is one of the main characteristics reflected by the 

DRAGON molecular descriptors and that differentiates the chemicals in this database. 

The coordinates of the chemicals of each class on the four first principal components were compared 

with the coordinates of chemicals that were not in the class (Table 2 of the supplementary material). 

Most of the classes of chemicals were represented. The two first principal components discriminated 

chemicals with methyl functional groups (Figure 2). The chemicals in this class were more 
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hydrophobic (Student’s t test, p<0.05 for MlogP and AlogP). This could be related to the fact that 

methyl groups are small hydrophobic units. The second principal component strongly discriminated 

chemicals with arene functional groups (aromatic hydrocarbons) from non-cyclic structures (Figure 2).  

Insert Figure 2 

The differences in biotransformation half-life were represented on the fourth component, therefore the 

relationship between logP and biotransformation half-life was investigated. There was a significant 

relationship between logP and biotransformation half-life (one-factor analysis of variance without the 

data with an undefined half-life; p-value= 4.705e-11): the chemicals with a very short half-life were 

less hydrophobic (Figure 3). 

Insert Figure 3 

Some chemical classes that were not represented on the first five principal components were actually 

pointed out earlier in this paper as being important regarding overall toxicity (chemicals with a methyl 

substituent on an aromatic ring) or relative sensitivity of species (chemicals with an impaired OH or 

NH2 group). A number were not represented on the first three. Also there were no significant 

correlations between log(EC50) or log(LC50) and the two first PCA components (test of nullity of 

Pearson’s correlation coefficient, p<0.05). The 2D and 3D DRAGON molecular descriptors used were 

thus representative of several structural and chemical properties that are related to toxicity, but not of 

all the structural fragments pointed out earlier in this paper. 

The most and the least sensitive species to each chemical are shown on the scatter plot in Figure 4. In 

case of ties, the most/least sensitive species to a chemical was randomly assigned. The patterns tended 

to show that relative toxicity towards the various species were at least related to the two first principal 

components. Approximately one quarter of the scatter plot contained 30 chemicals that were mostly 

more toxic towards D. magna or O. latipes and less toxic towards P. subcapitata or O. latipes. This 

area (coordinate on 1st component smaller than 1 and coordinate on 2nd component smaller than -1.85) 
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was examined by a series of Fisher’s exact tests on the chemical class (results in Table 4 of the 

supplementary material). The chemicals in this area were all arenes (organic functional group 

classification) but displaying a wide variety of substituents; compared to the rest of the dataset, a large 

proportion had an aryl halide functional group with chlorine or were classified as anilines in the US 

EPA classification. None of them had a methylene functional group. The chemicals in this area were 

on average as hydrophobic as the other chemicals (Mann-Whitney test on MlogP, p=0.051), however 

the range and variance of logP were smaller (MlogP ranged from 1.2 to 3.8; Levene's Test for 

Homogeneity of Variance on MlogP: p=0.0040). The chemicals in this area had noticeably lower 

values for some DRAGON descriptors belonging to the groups of Edge Adjacency indices 

Eigenvalues, of lowest eigenvalues of the Burden matrix, 3rd component size or accessibility 

directional WHIM index as well as a lower spherosity (SPH descriptor values were characteristic of 

aromatic chemicals).  

Insert Figure 4 

The first principal components are thus related to cross-species differences in sensitivity as well as to 

some chemical classes which in turn are related to the degree of toxicity of the chemicals. Therefore 

the molecular descriptors might be predictors of the acute toxicity of the chemicals. The relationships 

between DRAGON descriptors on one side and toxicity and relative sensitivity on the other side were 

further investigated by PLS regression during QSAR modelling. 

3.4.2 QSAR models of toxicity 

Table 1 of the supplementary material shows which chemicals were in the training set and in the test 

set. The log(EC50) or log(LC50) in the training set and test set were not significantly different for any 

of the species (Mann-Whitney test, p>0.05), although the lowest value for P. subcapitata and for D. 

magna was in the test set. A visual inspection of the position of the test set chemicals on the first two 

axes of the PCA with all chemicals did not reveal any differences in distribution of the test set and 

training set. 
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PLS1 regression was performed for each of the three endpoints on the training set with 7-segment 

cross-validation on the 782 descriptors that were non-constant both on the training and test set. The 

PLS models had negative cross-validated coefficients of determination (Q²CV) and very low predictive 

validity (results not shown). 

Regarding external validation quality of prediction, PLS modelling did not perform as well as a simple 

linear regression of log(EC50) or log(LC50) on either calculations of the logP or their squares (R², R² 

adjusted for the number of variables, and Q² are reported in Table 3), where the Q²ext ranged from 0.12 

(MlogP, P. subcapitata) to 0.61 (AlogP², D. magna) although the R² values obtained on the training 

set were smaller. These predictions were also of poor predictive validity. Multiple linear regression on 

both the logP and logP² (Patrick, 2001) did not perform better regarding adjusted R² or Q²ext (results 

not shown). 

Insert Table 3 

Compared to linear regression on AlogP², the predictions obtained considering pairwise interspecies 

correlations (Table 3) were better for all three species. For P. subcapitata, Q²ext with linear regression 

on AlogP² was equal to 0.47, whereas on log(EC50)D.magna, Q²ext was equal 0.55. For D. magna, the 

increase in Q²ext was greater: on AlogP², Q²ext was equal to 0.61 whereas on log(LC50)O. latipes, Q²ext was 

equal to 0.80. For O. latipes, on AlogP², Q²ext was equal to 0.57; on log(EC50)D. magna, Q²ext reached 

0.77. Predicting toxicity towards one species with toxicity from both other species (instead of only 

one) only improved the predictions for D. magna when considering the adjusted R² (R²adj=0.64 on 

log(LC50)O. latipes; R²adj=0.72 on both log(EC50)P subcapitata and log(LC50)O. latipes). Adding the AlogP² 

measure of hydrophobicity to the later model did not further improve the predictions when considering 

the adjusted R² (Table 3). 

PLS discriminant analysis of the most sensitive species according to the physico-chemical descriptors 

performed poorly (results not shown). 



17 

 

4 Discussion 

The dataset analysed was chemically heterogeneous, containing aliphatic and aromatic organic 

chemicals, but there were no highly hydrophobic chemicals (with AlogP>6) and no persistent 

chemicals. Its representativeness is quite limited, considering the physicochemical properties of 

chemicals notified in Europe. 

The interspecies correlations between fish and Daphnia toxicity values were higher than the 

correlation with algae, thus confirming previous research on other ecotoxicity databases (Henegar et 

al., 2011; Lessigiarska et al., 2004; Tremolada et al., 2004; Weyers et al., 2000; Zhang et al., 2010). 

Zhang et al. (2010) suggest the difference is due to bio-uptake and mode of action. The magnitude of 

the correlations are similar to those calculated by Tremolada et al. (2004) for pesticides between 

Daphnia and trout (R²=59%), and for unspecific pesticides between algae and Daphnia (R²=52%) and 

algae and trout (R²=49%).  

In an analysis of 164 chemicals from a database provided by the French Ministry of Ecology and 

Sustainable Development, Henegar et al. (2011) showed that fish were less sensitive than algae and 

Daphnia. Weyers et al. (2000) showed that alga was the most sensitive trophic level in a database of 

694 chemicals, extracted from the New Chemicals Database which comprises information about new 

chemical substances manufactured or imported in the European Union since 1981. In a study on 1,439 

chemicals, Jeram et al. (2005) showed that alga was the most sensitive and fish was the least sensitive. 

However, their database included many herbicides, which are likely to target algae. The database 

analysed in this study was smaller and contained only eight pesticides, of which one herbicide, one 

insecticide, and several non-specific pesticides. Part of our results suggests that daphnids might be the 

most sensitive in general, but the small size of the dataset leads to limit the significance of this 

conclusion. Moreover, the other published studies do not support this conclusion.  

OECD, based on the several studies (Hoekzema et al., 2006; Hutchinson et al., 2003; Jeram et al., 

2005), proposed a threshold approach to reduce the number of fish for the determination of acute 
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aquatic toxicity in a regulatory context. The authors report that algae or daphnia were more sensitive 

than fish for 80% to 88% of the chemicals in their databases, compared to 75% in our dataset. The 

testing strategy based on that developed by Hutchinson et al. (2003) would however still have enabled 

reducing the number of fish used, by designing the fish tests on the basis of the results obtained with 

algae or daphnia and proceeding sequentially (limit test in a first step and full test if lethal effects are 

observed at the lowest EC50 determined in the daphnia and algae tests). 

When using the OECD (Q)SAR Toolbox to identify structural fragments related to toxicity, only the 

categorisations focussing on bioaccumulation or biotransformation yielded classes of chemicals that 

were both represented by a sufficient number of chemicals to be tested and were significantly more or 

less toxic than the other chemicals in the dataset. In particular, chemicals with very short 

biotransformation half-lives in fish were less toxic to all species. In this data set, the chemicals with a 

very short biotransformation half-life were less hydrophobic, as the QSAR model which was used to 

predict the biotransformation half-life (Arnot et al., 2009) was partly based on the logP. Linear 

regression of log(EC50) or log(LC50) on logP confirmed previous research showing that toxicity of 

chemicals increased with hydrophobicity (Duchowicz and Ocsachoque, 2009; Hsieh et al., 2006; 

Shigeoka et al., 1988). It is unclear whether the difference in toxicity observed in the dataset is due to 

biotransformation half-life or to hydrophobicity.  

Linear regression on a measure of logP performed better than PLS regression on a large set of 

DRAGON molecular descriptors. According to Golbraikh and Tropsha (2002), two of the necessary 

conditions for a model to be considered as predictive are that R²>0.6 and Q²>0.5. None of the QSAR 

models developed in this paper by PLS regression or by linear regression on a measure of logP satisfy 

these criteria. The results from the PLS regression do not encourage the selection of any particular 

molecular descriptors apart from the logP. Interspecies correlations between toxicity tests were better 

than between toxicity and logP, as shown by Weyers et al. (2000) in a study on part of the New 

Chemicals Database. The external validation Q² values were often greater than the R² values and 
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therefore the distribution of  the chemical classes in the original data set in the training set and test set 

was checked. In the test set, there were a slightly higher proportion of aromatic chlorides and 

chemicals with moderate biotransformation half-lives, but this did not result in any significant 

difference in toxicity. 

The conclusions in terms of relative sensitivity of species are not straightforward, as the results 

obtained with the test on the most sensitive species are not confirmed by the test on the least sensitive 

species. On the other hand, tests generally focus on the most sensitive species rather than on the least 

sensitive, meaning that the data concerning the most sensitive species are more reliable. Basing their 

research on the Verhaar classification, Vaal et al. (1997b) concluded that chemicals with an unspecific 

mode of action were the least toxic and demonstrated smaller differences in interspecies sensitivity. 

They also concluded (1997a) that, except for anilines, compounds with the highest overall toxicity also 

have the largest variation in toxicity for different species. In our dataset however, the most toxic 

chemical classes (i.e. chemicals with the longest biotransformation half-lives) did not display any 

cross-species differences in toxicity. 

Our analysis with the OECD Toolbox outputs was repeated on the same dataset with data collected on 

141 additional chemicals before 2002, which might be less reliable as in some cases a dispersant was 

used, thus increasing almost three-fold the number of chemicals. The results obtained on the larger 

database confirmed the differences in sensitivity towards arenes (D. magna being more sensitive than 

the other species), methylene functional groups (D. magna being less sensitive), and phenols (P. 

subcapitata being less sensitive). Some of the classes identified by the Toolbox, such as anilines 

(aromatic amines), are subject to differences between categorisation schemes (US EPA versus organic 

functional groups or EcoSAR). On the other hand, arenes appear to be easily identifiable and not 

subject to differences between categorisation schemes. It has to be noted that arenes are a rather 

heterogeneous class of chemicals and further research focussing on this class would be required to 

better define the structural characteristics that could make daphnids more sensitive. 
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Anilines (aromatic amines) are pinpointed by a number of the classifications implemented by the 

OECD (Q)SAR Toolbox as an important class of chemicals regarding toxicity and have been shown to 

be particularly toxic towards daphnids due to a specific mode of action (Chen et al., 2007; Dom et al., 

2010; Neuwoehner et al., 2010; Vaal et al., 1997a). However, in this dataset, chemicals belonging to 

the aniline class were not significantly more toxic towards D. magna. 

Overall, the results regarding classes of chemicals representing structural alerts were obtained by 

performing a large number of tests with a high significance threshold (5%) in an exploratory analysis. 

The number of significant relationships is relatively small, and due to the fact that several 

classifications yield some identical or very similar classes, it is difficult comparing the proportion of 

significant results to the chance level. However, the results of the analysis of the larger database 

confirmed the results in terms of relative sensitivity of species and also generalised to all three species 

the effect of biotransformation half-lives observed with the 85-chemical dataset. 

5 Conclusions 

Although this dataset is relatively small, it is nevertheless valuable in particular as 85 chemicals were 

tested with the same methodology, in a relatively short span of time, and on three aquatic species 

belonging to three different trophic levels. Also the main results obtained on this small dataset were 

confirmed by the analysis of a larger dataset. The effort put into sharing the data by the Japanese 

Ministry of Environment is thus very valuable and should encourage the publication of this type data 

in general as it could increase the relevance of comparative studies. Datasets relative to more 

homogeneous chemicals would also be welcome.  

Exploratory analyses both on presence of structural fragments and on quantitative molecular 

descriptors illustrated relationships between toxicity and cross-species differences in sensitivity on the 

one hand and physico-chemical characteristics, especially hydrophobicity, on the other hand. In 

predicting toxicity towards each species, simple linear regression on logP performed better than PLS 
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regression of toxicity on a very large set of molecular descriptors, thus confirming the importance of 

hydrophobicity in predicting ecotoxicity. The predictions of toxicity based on the interspecies 

correlations performed better than the QSAR predictions. In the scope of reducing the number of in 

vivo tests, the cross-species differences in sensitivity obtained with the outputs of the OECD (Q)SAR 

Toolbox suggest that aromatic chemicals should be tested first of all on D. magna, as part of a testing 

strategy. The concentrations tested on fish could then be adjusted according to the toxicity towards D. 

magna, in order to avoid unnecessary tests and thus reduce the number of vertebrates used in 

ecotoxicity testing.  

Though a number of statistically significant associations were revealed in this paper, the interpretation 

in terms of biological mode of action is not straightforward due to a lack of knowledge. Though the 

OECD Toolbox does implement a categorisation based on the mode of action, the classes obtained did 

not differ in toxicity. Amongst the categorisations implemented by the OECD Toolbox, those 

focussing on bioaccumulation or biotransformation appeared to be the most interesting in terms of 

environmental prediction on a whole set of chemicals, partly as they yielded classes of chemicals that 

were both represented by a sufficient number of chemicals to be tested. However, some 

categorisations may pinpoint particularly relevant structural fragments but may not be sufficiently 

represented in this dataset to allow drawing any conclusions. The use of the categorisation schemes 

implemented in the OECD (Q)SAR Toolbox and of DRAGON molecular descriptors showed that the 

molecular descriptors are related to some well-defined chemicals classes, such as arenes or chemicals 

with a methyl functional group, which are relevant considering toxicity or relative sensitivity of 

species. 

Further research is required to investigate the relationship between hydrophobicity, biotransformation 

half-life and toxicity towards aquatic species. Further developments in QSAR methods could include 

nonlinear models to improve predictions or the integration of uncertainty on the experimental values 
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(EC50or LC50) in order to estimate the uncertainty on the predictions. The integration of molecular 

reactivity represented by quantum descriptors in the QSAR models might improve the predictions. 
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Table 1: Ratios of mean EC50 or LC50 of chemical class over mean EC50 or LC50 of other 
chemicals; number of cases where the Fisher’s exact test p-value was smaller than 0.05; most sensitive 
species. 

 
 

 
 

Toxicity of chemical class: ratio EC50 
or LC50 

Species’ relative sensitivity 

 
 

 
Fisher’s exact test on most 

sensitive species 
Fisher’s exact test on least 

sensitive species 

Classification Class 
Number 

of 
chemicals 

EC50 P. 
subcapitata 

EC50 D. 
magna 

LC50 O. 
latipes 

Number of cases 
were the p-value 
is <0.05 (out of 

2 cases) 

Most 
sensitive 
species 

Number of 
cases were the 

p-value is <0.05 
(out of 4 cases) 

Most 
sensitive 
species 

Organic functional 

group 

Anilines 14 1.74 1.61 2.37     

Arene 61 1.33 0.724 1.03 2/2 D. m   

Aryl halide 12 1.57 1.28 1.44     

Ether 11 1.78 2.42 2     

Methyl 39 1.06 0.616 0.511   2/4 D. m 
O. l 

Methylene 22 0.81 0.895 0.612 2/2 P. s 
O. l 

  

Phenol 28 1.39 1.03 0.772   3/4 D. m 
O. l 

EcoSAR 

Classification 

Anilines (Aromatic Amines) 14 1.74 1.61 2.37     

Neutral Organics 21 0.808 0.951 1.14     

Phenols 25 1.36 0.834 0.589   4/4 D. m 
O. l 

Mutagenicity/ 

Carcinogenicity 

alerts by 

Benigni/Bossa 

No alerts for carcinogenic activity 53 0.842 1.08 1.05     

Primary aromatic amine,hydroxyl 

amine and its derived esters 12 1.47 1.42 2.02  

 

 

 

Structural alert for genotoxic 

carcinogenicity 29 0.95 0.759 0.737  

 

 

 

US EPA 

Classification 

N/A) 26 0.796 0.945 0.824     

Anilines (Acute toxicity) 11 1.52 1.03 2.44   2/4 P. s 
D. m 

Phenols (Acute toxicity) 25 1.36 1.01 0.691   4/4 D. m 
O. l 

Acute Toxicity 

MOA by OASIS 

Basesurface narcotics 21 0.615 0.659 0.871     

Phenols and Anilines 34 1.82 1.01 1.33     

Reactive unspecified 25 0.649 1.1 0.622     

Protein binding No Binding 71 1.34  1.57  2.99     

DNA binding No Binding 60 1.28 1.11 0.952     

Estrogen Receptor 

Binding 

Non-cyclic structure 15 0.418 0.986 0.881 1/2 P. s 
O. l 

  

Weak binder, OH 10 1.86 1.5 1.14     

With impaired OH or NH2 group 11 2.43 2 0.89 2/2 O. l   

Without OH or NH2 group 27 0.751 0.634 0.754     

Bioaccumulation – 

metabolism alerts 

-CH2-  [linear] 17 0.821 0.869 0.57 2/2 P. s 
O. l 

  

Alkyl substituent on aromatic ring 19 3.32 1.59 1.31 2/2 D. m 
O. l 
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Aromatic-CH3 12 6.02 2.75 2.88     

Aromatic-H 65 1.66 0.929 1.05     

Aromatic alcohol  [-OH] 28 1.39 1.03 0.772   3/4 D. m 
O. l 

Aromatic amine   [-NH2  or  -NH-] 17 1.16 1.21 1.73     

Aromatic chloride   [-CL] 11 1.8 1.34 1.5     

Benzene 51 2.26 1.36 1.37     

Carbon with 4 single bonds & no 

hydrogens 12 0.881 0.645 0.528  

 

2/4 

O. l 

Methyl  [-CH3] 29 0.6 0.465 0.31 2/2 O. l   

Number of fused 6-carbon aromatic 

rings 9 0.0922 0.14 0.293  

 

 

 

Unsubstituted phenyl group (C6H5-) 11 0.352 0.273 0.324     

Bioaccumulation – 

metabolism half-

lives 

Fast 46 1.88 1.72 1.42     

Moderate 18 0.29 0.211 0.264     

Very fast 19 1.84 2.84 2.8     

 
Highlighted cells relate to p-values under 0.05 meaning that the chemical class is either more or less 

toxic than the rest of the chemicals (Student tests or Mann-Whitney tests depending on normality of 

EC50 or LC50 distributions). Tests on most sensitive species were carried out twice, allowing for the 

two possible cases due to one tie. Tests on least sensitive species were carried out four times, allowing 

for the four possible cases due to two ties. 
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Table 2: Top ten molecular descriptors with highest Pearson correlation coefficient (r) with log(EC50) 

or log(LC50) values 

 

log(EC50)  

P. subcapitata 

log(EC50) 

D. magna 

log(LC50) 

O. latipes 

Rank 
Molecular 

descriptor 
r 

Molecular 

descriptor 
r 

Molecular 

descriptor 
r 

1 ALOGP² -0.43 MLOGP² -0.57 MLOGP² -0.53 

2 MLOGP² -0.41 MLOGP -0.55 ALOGP² -0.52 

3 Mor27u -0.4 BLTF96 0.55 ALOGP -0.49 

4 D/Dr10 -0.39 ALOGP² -0.54 MLOGP -0.47 

5 L/Bw -0.38 ALOGP -0.5 BLTF96 0.47 

6 nR10 -0.35 TPSA(NO) 0.46 EEig14d 0.39 

7 piPC09 -0.35 nHAcc 0.45 Hy 0.37 

8 IC1 0.35 nO 0.43 MAXDN 0.36 

9 ALOGP -0.35 SEigv -0.41 TPSA(NO) 0.36 

10 EEig14d 0.34 TPSA(Tot) 0.41 Ms 0.35 

Signification of the abbreviations are given in Table 2 of the supplementary material. 
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Table 3: Coefficient of determination (R², first row), adjusted coefficient of determination (2nd row) on 

training set, and externally validated coefficient of determination (Q²ext, 3
rd row) for linear regression 

models of log(EC50) or log(LC50) for each species on logP (two different calculations by Dragon and 

their squares), on each other species, on both other species, and on both other species and AlogP². 

 

Log(EC50)  

P. subcapitata 

Log(EC50) 

D. magna 

Log(LC50) 

O. latipes 

Log(EC50) or 

log(LC50)  

2 species 

Log(EC50)or 

log(LC50)  

2 species + AlogP² 

MlogP MlogP² AlogP AlogP² 

Log(EC50) P. subcapitata  

 

0.525 

0.518 

0.555 

0.382 

0.371 

0.477 

0.529 

0.513 

0.560 

0.529 

0.505 

0.560 

0.084 

0.069 

0.117 

0.166 

0.153 

0.117 

0.037 

0.022 

0.258 

0.068 

0.052 

0.474 

Log(EC50) D. magna  

0.525 

0.518 

0.540 

 

0.644 

0.638 

0.761 

0.729 

0.720 

0.799 

0.731 

0.717 

0.816 

0.269 

0.257 

0.318 

0.299 

0.288 

0.363 

0.129 

0.115 

0.465 

0.119 

0.104 

0.615 

Log(LC50) O. latipes 

0.382 

0.371 

0.474 

0.644 

0.638 

0.775 
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Figure 1: Pairwise interspecies correlations between experimental EC50 or LC50 values for O. latipes, 

D. magna, and P. subcapitata. The solid line is the regression line. 

  

Figure 2: Scatter plots of the two first principal components, highlighting chemicals with a methyl 

organic functional group (left) and aromatic vs. non-cyclic chemicals (right) 
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Figure 3: Boxplot of MLogP according to the biotransformation half-life in fish. Number of chemicals 

in brackets. 

 

 

Figure 4: Scatter plots of the two first principal components, showing most sensitive species to each 

chemical (left), least sensitive species to each chemical (right) and specific area investigated. 

 

 


