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BCRP: Breast cancer resistance protein 

CAT model: Compartmental Absorption and Transit model 
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GFR: Glomerular filtration rate 

HPGL: Hepatocellularity 

IPA: Isopropanol 

MCMC: Markov Chain Monte Carlo 

MDR1: Multi-drug resistance protein 

MRP2: Multidrug-resistance protein 2 
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ABSTRACT 

Generic PBPK models, applicable to a large number of substances, coupled to parameter 

databases and QSAR modules, are now available for predictive modelling of inter-individual 

variability in the absorption, distribution, metabolism and excretion of environmental chemicals. 

When needed, Markov chain Monte Carlo methods and multilevel population models can be 

jointly used for a Bayesian calibration of a PBPK model, to improve our understanding of the 

determinants of population heterogeneity and differential susceptibility. This article reviews 

those developments and illustrates them with recent applications to environmentally relevant 

questions. 
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1. INTRODUCTION 

PBPK models are now commonly used in drug development and regulatory toxicology to predict 

the kinetics and metabolism of substances in the body, with a focus on the effective dose at the 

expected target site (Barton et al. 2007; Bouvier d'Yvoire et al. 2007; Edginton et al. 2008; 

Loizou et al. 2008). 

The physiological basis of PBPK models makes them especially suited to explore, understand 

and predict the determinants of inter- or intra-individual variability in pharmacokinetics. Those 

translate into variability of target doses and can have direct consequences for therapeutic safety 

and the likelihood of toxicity, especially for compounds with narrow therapeutic windows or a 

steep dose-response for toxicity. Therefore, simulation of inter-individual variability has become 

an integral part of the assessment of pharmacokinetics in humans (Bois 2001; Rostami-Hodjegan 

and Tucker 2007). The mechanistic framework of PBPK models provides the capacity of 

predicting inter-individual variability in pharmacokinetics when the required information is 

adequately incorporated. This short review presents the state of the art on this question and 

illustrates the approach with two recent applications of the Simcyp software to environmentally 

relevant questions. 

2. PBPK MODELING 

When a chemical substance penetrates an animal body (following intentional administration or 

unintentional exposure), it is usually distributed to various tissues and organs by blood flow 

(Gerlowski and Jain 1983; Nestorov 2007). Following its distribution to tissues, the substance 

can bind to various proteins and receptors, undergo metabolism, or can be eliminated unchanged. 

The concentration versus time profiles of the xenobiotic in different tissues, or the amount of 

metabolites formed, are often used as surrogate markers of its internal dose or biological activity 

(Andersen 1995).  
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Mathematical models can be used to interpolate and extrapolate (predict) such concentration-

time profiles from data. Reported models range from simple compartmental (Gibaldi and Perrier 

1982) to very sophisticated (Jamei et al. 2009a; Luecke et al. 2008). PBPK models are evolved 

compartmental models which tend to use realistic biological descriptions of the determinants that 

regulate the disposition of drugs in the body (Andersen et al. 2005). Those models describe the 

body as a set of compartments corresponding to specific organs or tissues (e.g., adipose, bone, 

brain, gut, heart, kidney, liver, lung, muscle, skin, and spleen, etc.). Between compartments, the 

transport of substances is dictated by various physiological flows (blood, bile, pulmonary 

ventilation, etc.) or by diffusion (Bois and Paxman 1992; Gerlowski and Jain 1983). Perfusion-

rate-limited kinetics applies when the tissue membrane presents no barrier to distribution. 

Generally, this condition is likely to be met by small lipophilic substances. In contrast, 

permeability-rate kinetics applies when the distribution of the substance to a tissue is rate-limited 

by the drug’s permeability across the tissue membrane. That condition is more common with 

polar compounds and large molecular structures. Consequently, the related PBPK models may 

exhibit different degrees of complexity. In the simplest and most commonly applied form (see 

Figure 1), each tissue is considered to be a well-stirred compartment in which the substance 

distribution is simply limited by blood flow. In such a model, any of the tissues can be a site of 

elimination. However, in Figure 1, it is assumed that the gut, liver and kidney are the only 

metabolising tissues and that excretion only happens in the kidney.  

Building a PBPK model requires gathering a considerable amount of data which can be 

categorised in three groups: namely, the system’s data (physiological, anatomical, biochemical 

data); drug-specific data; and the model structure, which refers to the arrangement of tissues and 

organs included in the model (Rowland et al. 2004). In a sense, PBPK modelling is an integrated 

systems approach to both understanding the pharmacokinetic behaviour of compounds and 

predicting concentration-time profiles in plasma and tissues. Additional details on PBPK 

modelling can be found elsewhere (Gerlowski and Jain 1983; Nestorov 2003; Rowland et al. 
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2004). Indeed, such a description of the body is approximate, if not rough, but a balance has to 

be found between precision (which implies complexity) and simplicity (for ease of use). Yet, the 

generic structure of a PBPK facilitates its application to any mammalian species as long as the 

related system data are used. Therefore, the same structural model can approximately be used for 

a human, a rat or a mouse.  

The model structure can be described by a set of differential equations, with parameters repre-

senting blood flow rates, organ volumes etc., for which information is available in the published 

scientific literature or may be obtained in vitro (Parrott et al. 2005; Woodruff and Bois 1993). 

Numerical integration of that differential system computes the quantity and concentration of the 

drug considered in each compartment, as a function of time and exposure dose.  

3. VARIABILITY VS. UNCERTAINTY 

Inter-individual differences (“variability”), in the anatomical and physiological characteristics of 

humans or animal are glaring and a common experience. Such differences affect, for example, 

organ volumes and blood flow and translate quite naturally into variability in the 

pharmacokinetics of drugs and chemical substances from one individual to the next. Since 

pharmacokinetics determine, in part, effective dose and ensuing effects, pharmacokinetic 

variability has an impact on individual susceptibility. Two major, complementary, modelling 

approaches have been developed to understand, evaluate and predict that variability: A priori and 

a posteriori modelling. 

A priori (bottom-up), purely predictive, modelling of variability can be undertaken either 

through deterministic descriptions of the determinants of variability or through stochastic 

simulations (Monte Carlo methods) (Bois et al. 1990; Clewell and Andersen 1996; Clewell et al. 

2004; Rostami-Hodjegan and Tucker 2007; Willmann et al. 2009; Willmann et al. 2007). Both 

approaches can also be combined. Deterministic modelling motivations stem, partly, from the 
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fact that some of the differences between individuals are due to growth and other age-related 

changes, or sex, etc. Such changes can be explicitly modelled in life-time PBPK models (Clewell 

et al. 2004; Edginton et al. 2006). Monte Carlo methods acknowledge (some may say: hide 

intellectual laziness behind) the fact that part of the differences between individuals seem to 

occur by chance or cannot be ascribed simply to easily modelled determinants such as age etc. In 

that case, those differences are considered as purely random and parameter values are described 

by statistical distributions, rather than point estimates or simple functions of time, sex or other 

covariates. 

A posteriori (top-down) modelling of inter-individual variability is data-based, and was 

originally developed in pharmacokinetics, where human data were routinely generated through 

clinical trials. The aim here is to assess, for example, how across-subject variability of blood 

concentration for a substance can be explained by variability in renal excretion rate, 

bioavailability, metabolic rate, etc. That is best achieved through inverse simulation in the 

framework of multilevel statistical models (“population pharmacokinetic models”) (Bois 2001; 

Sheiner 1984). That approach was first used with classical (minimal) compartmental models 

(Beal and Sheiner 1980, 1982), but the added ingredients of MCMC simulations and Bayesian 

inference make it amenable to the treatment of PBPK models (Bois et al. 1996a; Bois et al. 

1996b; Gelman et al. 1996). After unrolling the determinants of variability, forward, predictive, 

simulations can be performed to assess their impact in various exposure and risk or clinical 

treatment scenarios. 

Uncertainty is different from variability, although their effects may be confounded and 

compounded. Uncertainty is essentially due to lack of knowledge and may have various sources. 

For example, measurements are made only with finite precision; so when data are used to fit 

toxicokinetic or toxicodynamic models, there is always some uncertainty ("noise") about the 

estimated parameters values. Also, studying a limited population sample introduces an element 
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of randomness when attempting to extrapolate the results to the whole population. Finally, our 

inability to describe or model precisely a system may result from our lack of understanding and 

simplifications or misspecifications of the fitted models translate into parametric uncertainty 

(Bois 2001; Bois and Diack 2005). While variability is by essence irreducible and unavoidable, 

since it is a state of Nature, uncertainty can be reduced by new experiments, or by a better 

understanding of the biology and better models. In a further twist, the fact that uncertainty is 

almost always present hampers a precise assessment of variability. Statistical "population" 

models are able to disentangle partly uncertainty from variability. These models will be reviewed 

in section 7, below. 

4. A PRIORI PREDICTION OF VARIABILITY USING PBPK MODELING 

Predictive variability assessment with PBPK models proceeds nowadays with a combination of 

mechanism and data based refinements of the model structure (e.g., using age-dependent 

compartment volumes) (Clewell et al. 2004; Luecke et al. 2008) and stochastic modelling of the 

remaining random components of inter-individual differences. Numerical Monte Carlo methods 

(Clewell et al. 1999; Price et al. 2003; Spear et al. 1991; Woodruff et al. 1992), eventually 

hierarchical (Bois 1999; Bois et al. 1996a; Bois et al. 1996b), are the most widely used for the 

latter task. Those are best suited for complex models with many parameters. The basic 

assumption made by Monte Carlo simulations is that the randomness of the model state variables 

(e.g., blood concentration) is simply due to the randomness in the model parameter values. It is 

then enough to define statistical distributions for the parameters supposed to vary randomly in 

the population, and to sample the model parameter values from those distributions. The model is 

then run with the needed inputs and its outputs of interest are recorded. That sampling-running 

step constitutes a basic Monte Carlo iteration. As many iterations as needed can be performed to 
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characterise precisely the statistical distribution of the recorded outputs. Additional details on 

Monte Carlo methods can be found in Ripley (1987). 

Early attempts to use Monte Carlo methods and to simulate pharmacokinetic behaviour in 

“virtual populations” date back to the mid-1980s. Jackson et al. assessed the robustness of dif-

ferent experimental in vivo indices to detect and display genetic polymorphisms in human drug-

metabolising activity (Jackson and Tucker 1990; Jackson et al. 1986). Monte Carlo analyses of 

PBPK models were also described at that time (Bois et al. 1990; Portier and Kaplan 1989). These 

simulations were later expanded to show the effect of variability in absorption, distribution, 

metabolism and excretion (ADME) parameters on the power of single time point estimates for 

the assessment of metabolic activity (Jackson et al. 1991), power analyses of bioequivalence 

measures (Bois et al. 1994a, b), the differentiation of parent drug and metabolite data in 

bioequivalence assessment (Rostami-Hodjegan et al. 1994), the discriminatory power of 

different indices of in vivo enzyme activity and the optimisation of sampling to assess such 

activity (Rostami-Hodjegan et al. 1996). Coupled with Monte Carlo methods, PBPK modelling 

has been used to assess the quantitative impact of physiological and environmental factors on 

human variability in toxicokinetics and pharmacokinetics in other publications (Bois et al. 1991; 

Clewell and Andersen 1996; Jamei et al. 2009a; Nestorov 2001; Sato 1991).  

5. SOURCES OF VARIABILITY IN PHARMACOKINETICS 

The overall inter-individual variability in pharmacokinetics can be simulated by considering the 

variability in key system parameters in PBPK modelling (Jamei et al. 2009a) (see Figure 2 for 

examples of clearance covariates). Details on the prediction of inter-individual variability in 

pharmacokinetics are discussed in detail below.  
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5.1. ABSORPTION 

There are many routes for xenobiotics to enter into the body which can generally be divided into 

topical, enteral and parenteral categories. Some of these routes (oral, infusion, intravenous, 

intramuscular, transdermal and inhalation) are routinely used to administrate drugs. The oral, 

transdermal and inhalation routes, which are most relevant to environmental exposures, are 

briefly discussed in this section.  

Oral administration is the most common and convenient route of drug administration. Yet, it is 

often associated with low bioavailability and high inter-individual variability. Oral 

bioavailability (Foral) is defined as: 

 
HGaoral FFfF  (1) 

where fa is the net fraction of dose absorbed from the intestinal tract, FG is the fraction of dose 

that escapes intestinal first-pass metabolism in the enterocytes, and FH is the fraction of dose that 

escapes hepatic first-pass metabolism. fa is discussed in this section and FG and FH will be 

discussed later. 

Various factors can affect oral drug absorption. They can be divided into two categories: system 

(physiological and biological) factors and drug-related (physicochemical and pharmaceutical) 

factors. These factors can all contribute to the overall rate and extent of absorption, but mainly 

the system factors determine the inter-individual variability in absorption.  

5.1.1. Oral Absorption 

Key physiochemical properties, such as solubility and permeability are used in empirical 

methods to estimate the absorption potential of a drug (Artursson and Karlsson 1991; Dressman 

et al. 1985). Physiological models, such as the CAT model, have been developed to simulate 

mechanistically drug absorption (Yu and Amidon 1999). The CAT model has been further 
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developed into the ACAT (Agoram et al. 2001) and the ADAM  (Jamei et al. 2009b) models, 

which are respectively implemented within software Gastroplus (Simulation Plus Inc, California, 

USA, http://www.simulationsplus.com) and Simcyp Population-based ADME Simulator 

(Simcyp Ltd, Sheffield, UK, http://www.simcyp.com). In brief, these absorption models consist 

of physiologically based compartments corresponding to different segments of the gastrointes-

tinal tract.  

Gastric Emptying Time 

The residence time of a drug in the stomach is an important factor determining the initiation of 

oral drug absorption. Variability in gastric emptying rates results in variable absorption rates and 

sometimes even variable absorption extents.  

Intestinal Residence Time  

Intestinal residence time can greatly affect oral drug absorption; particularly for drugs with low 

permeability. Yu and co-workers analyzed published data for low intestinal residence time in 

over 400 subjects and reported a mean value of 199 min with ranges of about 1 and 6 hours (Yu 

et al. 1996). Intestinal residence time appears to be relatively less dependent upon the nature of 

the dosage form (liquid vs. solid) than gastric residence time (Davis et al. 1986). The presence of 

food appears not to influence intestinal transit (Davis et al. 1986; Fadda et al. 2009). 

Gastrointestinal pH 

The regional pH in the gastrointestinal tract can influence drug solubility and hence the 

dissolution of solid dosage forms. Gastrointestinal pH may also affect drug permeability by 

influencing the balance between ionised and non-ionised moieties. Fallingborg and co-workers 

measured pH profiles along the gastrointestinal tract in 39 healthy volunteers and observed a 



 12 / 52 

range of values up to two pH units at the same site in different subjects (Fallingborg et al. 1989). 

In addition, the presence of food in the gastrointestinal tract can raise the pH in the stomach and 

the proximal part of the small intestine, due to the buffering capacity of proteins.  

Transporters 

Various transporters are expressed in the apical and basolateral membranes of intestinal 

epithelial cells (Hilgendorf et al. 2007; Koepsell 1998; Koepsell et al. 2007; Murakami and 

Takano 2008; Tsuji and Tamai 1996). Much attention has been given to the efflux transporters 

(e.g., P-gp, MDR1 (ABCB1), MRP2 (ABCC2) and BCRP (ABCG2)) at the apical (brush-

border) membrane of the intestine, as they can limit the intestinal absorption of drugs 

administered orally. Von Richter et al. (2004) measured P-gp in the human small intestine and 

reported a marked inter-individual variation in the intestinal P-gp expression. Additional data 

were reported by several later publications (Canaparo et al. 2007; Mouly and Paine 2003). 

Available data demonstrate that the expression levels of transporters vary along the 

gastrointestinal tract. Mouly and Paine (2003) found that relative P-gp levels increase 

progressively from the proximal to distal region of the small intestine. Other intestinal 

transporters may or may not follow the same pattern. 

5.1.2. Inhalation 

The large absorptive surface area, limited metabolic enzyme activity and active transporters in 

the pulmonary system make inhalation a favourable delivery strategy for systemic drugs with 

low bioavailability. In addition, many chemicals present in the air can get into body via the 

respiratory system. As for other routes of administration, the absorption kinetics in the lung 

tissues depend on both drug and system related parameters. Although inhalation is an established 

delivery strategy, the relationship between drug physicochemical properties and drug absorption 

kinetics in the lung has not been extensively investigated. In contrast to oral drug absorption 
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little attention has been devoted to the question of how to optimize local drug absorption and 

retention in the lung (Yu and Rosania 2010). The state of the art on this question is somewhat 

more advanced for occupational exposures to volatile substances (Johanson 1990; Löf and 

Johanson 1998). Different aspects of lung physiology and formulation composition that 

influence the systemic delivery of inhaled therapeutics and recent advancement in inhaled drug 

delivery are reviewed in Patton and Byron (2007). 

5.1.2. Dermal Absorption 

The skin, the largest interface between the body and the environment, protects our body against 

chemical, physical, and microbial injury, loss of water, and other endogenous substances. It is 

also involved in the thermoregulation of the body and serves as an excretory organ (Schaefer et 

al. 2008). Understanding skin absorption processes enables us to assess the safety aspects of 

chemicals, xenobiotics, and cosmetic formulations as well as optimally utilizing dermal drug 

delivery. Permeation of drug molecules across the skin occurs by passive diffusion according to 

the activity gradient (Cleek and Bunge 1993; Krüse et al. 2007; McCarley and Bunge 2001; Potts 

and Guy 1992). The outer skin layer, stratum corneum, forms a rate-controlling barrier for 

diffusion of most compounds. The predominant diffusional path for a molecule crossing the 

stratum corneum appears to be intercellular (Hadgraft and Guty 2002). However this path is not 

exclusive and probably most molecules will pass through the stratum corneum by a combination 

of intercellular lipid domains, transcellular route and via the appendages (hair follicles, etc.) 

(Farahmand and Maibach 2009b). 

Farahmand et al. investigated dermato-pharmacokinetic parameters of 12 transdermal patches 

and concluded that the serum concentration profile for transdermal therapeutic systems was 

affected by the physiological parameters, drug absorption and elimination. Therefore, in order to 

understand the variability in serum concentration it is necessary to take into account variability 

of each process involved (Farahmand and Maibach 2009a).  
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5.2 DISTRIBUTION 

The distribution process refers to the reversible transfer of drug from one location to another 

within the body. Factors that determine the distribution pattern of a drug with time include 

delivery of drug to tissue by blood, ability to cross tissue membranes, binding within blood and 

tissues, partitioning into fat, and tissue uptake (Rowland and Tozer 1995). The traditional 

description of the volume of distribution at steady state (Vss) corresponds to the sum of the 

products of each tissue to plasma partition coefficient (Kp:t) and the respective tissue volume in 

addition to the plasma volume (Sawada et al. 1984): 

 
tptepss KVPEVVV :):(  (2) 

where Vp, Ve and Vt are the volumes of plasma, erythrocyte and tissue, respectively, E:P is 

erythrocyte-to-plasma coefficient. Physiological factors affecting drug distribution include tissue 

volumes, tissue composition, blood perfusion rates to the tissues, plasma protein concentrations, 

hematocrit, and the expression of transporter proteins. Drug-specific factors determining the 

distribution behaviour of a drug include its ionisation, ability to cross membranes, bind to plasma 

proteins, partition into red blood cells and fat, and its specific affinity to influx or efflux 

transporter proteins.  

Direct determination of Kp:t usually involves intravenous constant infusions to animals followed 

by an extraction and quantification of drugs from tissue homogenates (Lin et al. 1982a, b; 

Sawada et al. 1984), which is costly and time consuming. It is, therefore, of interest to predict 

Kp:t values without conducting in vivo animal studies.  

Several mechanistic equations have been proposed to predict the tissue affinities of volatile 

organic compounds (Fiserova-Bergerova 1983; Fiserova-Bergerova and Diaz 1986; Fiserova-

Bergerova et al. 1980). Poulin and co-workers also developed mechanistic equations to predict 

the affinity of drugs for various tissues and organs (Poulin et al. 2001; Poulin and Theil 2000) 
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and subsequently Vss predictions (Poulin and Theil 2002a) using Eq. 2. The species-specific 

tissue composition parameters can be found in the literature and have been summarised by 

Poulin and Theil (2002b). Corrections on these equations were later made by Berezhkovskiy 

(2004). More recently, Rodgers and co-workers extended and improved these equations by 

considering drug ionisation and incorporating more details on drug distribution inside tissues 

(Rodgers et al. 2005; Rodgers and Rowland 2006). Briefly, those equations are based on the 

assumption that all drugs will dissolve in intra- and extracellular tissue water and partition into 

the neutral lipids and neutral phospholipids located within tissue cells. 

5.2.1 Tissue Volumes and Tissue Blood Flows 

Tissue volumes and blood flows are essential components of a PBPK model. Early publications 

reported representative physiological parameters values but did not indicate the biological 

variability associated with those data (Davies and Morris 1993; Williams and Leggett 1989). 

Inter-individual variability on tissue volumes and tissue blood flows has been reported by later 

publications (de la Grandmaison et al. 2001; Price et al. 2003).  

5.2.2 Tissue Composition 

Hematocrit refers to the percentage of total blood volume composed of red blood cells. It is 

influenced by factors including age, sex, seasonal influence, and habits of physical activity 

(Morse et al. 1947a; Morse et al. 1947b; Thirup 2003). Compared with men, women on average 

have lower hematocrit. Hematocrit ranges between 40%–54% in males and 38%–47% in 

females. 

Drug protein binding is the reversible interaction of drugs with plasma proteins. The extent of 

protein binding is a function of drug and protein concentrations, the affinity constant for the 

drug-protein binding and the number of protein binding sites (Grandison and Boudinot 2000). 
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The major drug binding proteins in plasma are: albumin, AAG and lipoproteins. Albumin levels 

are generally decreased with age, whereas AAG levels are not significantly affected by age.  

5.2.3 Transporters 

Numerous drug transporters are found on the membranes of various tissues. These transporters 

can influence drug distribution into the tissues, particularly for drugs with low passive 

permeability. There is now increasing evidence to suggest that transporters may affect the 

volumes of distribution of certain drugs (Grover and Benet 2009). For most drugs, however, 

transporters may not significantly influence the volume of distribution, but may still influence 

the local kinetics in certain tissues (e.g., brain, liver, etc) and cause pharmacological or 

toxicological consequences. Polymorphism has been identified in transporters, as reviewed by 

Ho and Kim (2005).  

5.3 METABOLISM 

Drug metabolism reactions are generally grouped into 2 phases. Phase I metabolism includes 

oxidation, reduction, hydrolysis and hydration reactions. Phase II reactions use an endogenous 

compound, such as glucuronic acid, glutathione, or sulphate, for conjugation to the drug or its 

phase I-derived metabolite to produce a more polar end product that can be more readily 

excreted in bile or urine.  

Although drug metabolism can take place in many organs, the liver has been long-recognised as 

the major site of metabolism for most drugs. More recently, the role of gut metabolism in first-

pass metabolism has been increasingly recognised. The intestinal tissue is endowed with phase I 

and II enzymes, although at lower levels than those for the liver (Pang 2003). Several CYP 

enzymes have been detected in the human small intestine, including CYP1A2, CYP2D6, 

CYP2E1, CYP2C8, CYP2C9, CYP2C19, CYP3A4, and CYP3A5 (Paine et al. 2006). Among 
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them, CYP3A4 is the most prominent enzyme present in the human intestine (Paine et al. 2006; 

Paine et al. 1997).  

5.3.1 Hepatic Metabolism 

Rane et al. (1977) successfully predicted in vivo hepatic metabolic clearance in rats based on in 

vitro data obtained from rat liver microsomes, taking into consideration the hepatic blood flow 

rate and the unbound fraction in blood. Since then, significant progresses have been achieved on 

predicting human hepatic metabolic clearance from a variety of in vitro systems, such as human 

liver microsomes, recombinant enzymes, and hepatocytes (Galetin et al. 2004; Houston 1994; 

Howgate et al. 2006; Iwatsubo et al. 1997; Obach 1999; Riley et al. 2005). 

The unbound total hepatic intrinsic clearance (CLuint,H) can be extrapolated from in vitro 

clearance determined in a variety of in vitro systems using scaling factors as described in Barter 

(2007) and according to the procedure described by Rostami-Hodjegan and Tucker (2007): 

Recombinantly expressed enzymes: 

 weightLiverMPPGL
rhEnZKm

abundanceEnzrhEnzV
ISEF

n

j

n

i ii

iii
ji _

)(

)(max
CLu

1 1
Hint,

 (3) 

where there are i metabolic pathways for each of j enzymes; ‘rh’ indicates recombinantly 

expressed enzyme; Vmax is the maximum rate of metabolism by an individual enzyme; Km is 

the Michaelis constant; MPPGL is the amount of microsomal protein per gram of liver; and ISEF 

is a scaling factor that compensates for any difference in the activity per unit of enzyme between 

recombinant systems and hepatic enzymes (Proctor et al. 2004). 

Human liver microsomes: 

 weightLiverMPPGLmicrosomesmgper _)__(CLuCLu intHint,  (4) 

Human hepatocytes: 
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 weightLiverHPGLshepatocytemillionsper _)__(CLuCLu intHint,  (5) 

where HPGL refers to hepatocellularity (millions of hepatocytes per gram of liver). 

CLuint,H is then combined with other determinants to obtain total hepatic intrinsic clearance, 

using a liver model. Several hepatic clearance models have been developed to quantify the 

effects of hepatic blood flow, fraction unbound in blood, and hepatic intrinsic clearance on 

hepatic clearance (Wilkinson 1987). Among these models the well-stirred model (Eqs. 6 and 7) 

has been widely used for its mathematical simplicity and practicality, as shown below:  

 
,HBH,B

,HBH,B
H,B CLufuQ

CLufuQ
CL

int

int  (6) 

 
,HBH,B

H,B
H CLufuQ

Q
F

int

 (7) 

where CLH,B is hepatic drug clearance based on whole blood drug concentration, QH,B is hepatic 

blood flow, fuB is the free fraction of drug in blood.  

As indicated by Eq. 6, inter-individual variability in CLH,B is influenced by the variability in 

three key parameters: QH,B,  fuB and CLuint,H.  

5.3.2 Gut Metabolism 

An operational model has been developed to predict first-pass metabolism in the gut. The “QGut” 

model (Eq. 8) (Rostami-Hodjegan and Tucker 2002; Yang et al. 2007; Yang et al. 2001) retains 

the form of the “well-stirred” model but the flow term (QGut) is a hybrid of both permeability 

through the enterocyte membrane and villous blood flow. 

 
,GGGut

Gut
G CLufuQ

Q
F

int

 (8) 

where FG is intestinal availability (fraction of dose that escapes intestinal first-pass metabolism 

in the enterocytes), fuG is the fraction of drug unbound in the enterocyte and its value is close to 
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1 in most cases (Yang et al. 2007), CLuint,G is the unbound total gut intrinsic clearance, and QGut 

is a hybrid of both permeability through the enterocyte membrane and villous blood flow: 

 
permvilli

permvilli

Gut CLQ

CLQ
Q  (9) 

where CLperm is a clearance term defining permeability through the enterocyte and Qvilli is villous 

blood flow (Yang et al. 2007).  

5.4 EXCRETION 

Excretion is the irreversible loss of the chemically unchanged drug. For most drugs, excretion 

occurs predominantly via the kidneys. However, some drugs and their metabolites are 

extensively excreted via the bile. Drug excretion can also happen via saliva, sweat, breast milk, 

and lungs, although their contributions to overall drug elimination are often small. 

5.4.1. Renal Excretion 

The kidney is the major site of drug excretion. Net renal drug excretion is a combination of three 

processes – glomerular filtration, tubular secretion and tubular reabsorption, as described by Eq. 

10. Glomerular filtration of a drug is a passive process that is dependent upon the unbound 

fraction of a drug in plasma (fu) and renal blood flow available for filtration, as described by Eq. 

11. Tubular secretion occurs predominantly in the proximal tubule, and is mediated by several 

families of transporters. Tubular reabsorption of a drug can be a passive or an active transport 

process. Passive reabsorption may occur throughout the nephron. Active reabsorption occurs in 

the proximal tubule and, similar to tubular secretion, is energy-dependent, saturable, 

stereospecific and also likely to be associated with competitive drug interactions (Tett et al. 

2003). 

 Rate of Excretion = (Rate of Filtration + Rate of Active Secretion)(1 – FR) (10) 
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 Rate of Filtration = fu × GFR × C (11) 

where FR is the fraction of drug reabsorbed from tubule lumen; fu is the fraction unbound in 

plasma; GFR is the glomerular filtration rate; and C is drug concentration in plasma.  

The primary determinants of renal excretion include renal blood flow, plasma protein binding, 

urine flow, urine pH, and renal transporters (Garrett 1978; Tucker 1981).  

Renal transporters play key roles in the secretion and reabsorption of many drugs and can 

significantly contribute to the variability in renal excretion of these compounds (Lee and Kim 

2004). Organic anion and organic cation transport systems are two major drug transport systems 

in the human kidney (Dresser et al. 2001), and the effects of genetic variations in transporters on 

renal clearance have been investigated recently (Wang et al. 2008). 

5.4.2 Biliary Excretion 

Biliary excretion is one of the primary elimination routes for xenobiotics and the conjugate 

metabolites (Arias et al. 1993). Biliary excretion requires active secretory transport because 

drugs are transported across the biliary epithelium against a concentration gradient. Often drugs 

excreted into the bile undergo some degree of reabsorption along the intestine (enterohepatic 

circulation).  

Ghibellini and co-workers used in vitro data obtained from sandwich-cultured human 

hepatocytes to predict the biliary clearance for three drugs, and the predicted values were 

significantly lower than in vivo data (Ghibellini et al. 2007). Biliary excretion is mediated by 

transporters in the canalicular membrane. Therefore, genetic variation in these transporters 

contributes to the inter-individual variability in biliary excretion. Several recent reviews have 

summarised the key transporters involved in hepatobiliary disposition of drugs (Chandra and 

Brouwer 2004; Ghibellini et al. 2006). 
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5.5 CO-EXPOSURES 

Part of the variability in metabolism observed in humans may also be due to uncontrolled co-

exposures to naturally occurring food-borne substances, environmental contaminants, therapeutic 

drugs, or chemical substances in the workplace. Drug-drug interactions are a well-known 

problem falling under that umbrella (Jamei et al. 2009a; Rostami-Hodjegan and Tucker 2007), 

but its generalisation to many-substance exposure remains to be better explored. The necessary 

tools are becoming available under the auspices of systems biology (Bois 2010). 

6. EXAMPLES OF APPLICATION OF A PRIORI MODELLING TO 

CHEMICAL RISK ASSESSMENT 

Risk assessments are performed to estimate the conditions under which individuals or 

populations may be harmed by exposure to environmental or occupational chemicals. In the 

absence of quantitative data in the human, this process is often dependent upon the use of animal 

and in vitro data to estimate human response. To reduce the uncertainty inherent in such 

extrapolations, there has been considerable interest in the development of PBPK models of toxic 

chemicals for application in quantitative risk assessments. PBPK models are effective tools for 

integrating internal dose assessment with diverse dose-response and mechanistic data in order to 

more accurately predict human risk (Andersen et al. 1987). One of the more challenging issues 

that must be considered in performing a human health risk assessment is the heterogeneity 

among humans. This heterogeneity is produced by inter-individual variations in physiology, 

biochemistry, and molecular biology, reflecting both genetic and environmental factors, and 

results in differences among individuals in the biologically effective tissue dose associated with 

a given environmental exposure (pharmacokinetics) as well as in the response to a given tissue 

dose (pharmacodynamics).  
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There has sometimes been a tendency in risk assessments to use information on the variability of 

a specific parameter, such as inhalation rate or the in vitro activity of a particular enzyme, as the 

basis for expectations regarding the variability in dosimetry for in vivo exposures. However, 

whether or not the variation in a particular physiological or biochemical parameter will have a 

significant impact on in vivo dosimetry is a complex function of interacting factors. In particular, 

the structures of physiological and biochemical systems frequently involve parallel processes 

(e.g., blood flows, metabolic pathways, excretion processes), leading to compensation for the 

variation in a single factor. Moreover, physiological constraints may limit the in vivo impact of 

variability observed in vitro (Johanson et al. 1999). For instance, high affinity intrinsic clearance 

can result in essentially complete metabolism of all the chemical reaching the liver in the blood; 

under these conditions, variability in amount metabolized in vivo would be more a function of 

variability in liver blood flow than variability in metabolism in vitro. Thus it is often true that the 

whole (the in vivo variability in dosimetry) is less than the sum of its part (the variability in each 

of the pharmacokinetic factors). Because the parameters in a PBPK model have a direct 

biological correspondence, they provide a useful framework for determining the impact of 

observed variations in physiological and biochemical factors on the population variability in 

dosimetry within the context of a risk assessment for a particular chemical (Clewell and 

Andersen 1996; Price et al. 2003).  

 It is important at this point to remember the distinction made above between uncertainty and 

variability. Early attempts to distinguish the contributions of uncertainty and variability can be 

found in Bogen and Spear (1987) or Allen et al. (1996). Several studies have attempted to 

estimate the impact of parameter variability in PBPK models on risk assessment predictions 

using the Monte Carlo approach (Allen et al. 1996; Clewell and Andersen 1996; Clewell et al. 

1999; Clewell and Jarnot 1994). As will be discussed in the next section, the use of a hierarchical 

Bayesian approach and Markov chain Monte Carlo simulations makes it possible to refine prior 

estimates of parameter variability on the basis of experimental data. The hierarchical Bayesian 
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approach is increasingly being used to characterize both the uncertainty and variability in PBPK 

model predictions (Bois 2000; Gelman et al. 1996; Hack et al. 2006; Jonsson et al. 2001b; 

Jonsson and Johanson 2001a; Qiu et al. 2010).  

It is useful in that context to consider the total variability among humans in terms of three 

contributing sources: (1) the variation across a population of “normal” individuals at the same 

age, e.g., young adults; (2) the variation across the population resulting from their different ages, 

e.g., infants or the elderly; and (3) the variation resulting from the existence of subpopulations 

that differ in some way from the “normal” population, e.g., due to genetic polymorphisms. A 

fourth source of variability, health status, should also be considered, although it is frequently 

disregarded in environmental risk assessment. To the extent that the variation in physiological 

and biochemical parameters across these population dimensions can be elucidated, PBPK models 

can be used together with Monte Carlo methods to integrate their effects on the in vivo kinetics 

of a chemical exposure and predict the resulting impact on the distribution of risks (as 

represented by target tissue doses) across the population. The following examples illustrate the 

application of PBPK models to inform population variability of the three types described above. 

Example 1: Population Variability 

Acceptable exposures to environmental contaminants are typically defined using a single value, 

such as the USEPA’s Reference Dose (RfD), which represents a daily ingestion rate considered 

to be without harm for most individuals. In the case of methylmercury, a PBPK model was used 

in a Monte Carlo analysis to provide information on the distribution of acceptable ingestion rates 

across the population (Clewell et al. 2000; Clewell et al. 1999). That is in contrast to the 

regulatory approach based on a single point estimate obtained using conservative assumptions. 

In that analysis, the maternal hair concentration associated with neurological effects in the 

offspring from an epidemiological study was converted to an expected distribution of daily 

ingestion rates across a population of U.S. women of childbearing age. The resulting distribution 
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of acceptable daily ingestion rates (RfDs) ranged from approximately 0.3 to 1.1 μg/kg/day, with 

a population median (50th percentile) of 0.5 μg/kg/day. This population distribution was used to 

inform risk-benefit analysis for alternative risk management options for contaminated sediment. 

In essence, the question here was: “How conservative are default conservative assumptions?”. 

The answer, given by Monte Carlo derived uncertainty and variability estimates, was in that 

case: “Very conservative”. 

Example 2: Age-Dependent Variability 

The following example illustrates the use of PBPK modelling to investigate the impact of 

pharmacokinetic variability on risk for the case of age-dependent pharmacokinetics. Specifically, 

the question being evaluated in this example is how normal changes in pharmacokinetic 

parameters from birth, through childhood, and across adulthood affect the dosimetry for 

environmental exposures to chemicals. To this end, a previously developed PBPK model for 

isopropanol and its metabolite acetone (Clewell et al. 2001) was adapted to simulate the 

physiological and biochemical changes in humans associated with growth and aging. In the age-

dependent model, all physiological and biochemical parameters change with time based on data 

from the literature (Clewell et al. 2004).  

Figure 3 shows the results of using this age-dependent model to simulate continuous inhalation 

of isopropanol at 1 ppb, beginning at birth and continuing for 75 years (Clewell et al. 2004). The 

model predicts that, for the same inhaled concentration, the blood concentrations achieved 

during early life are significantly higher than those achieved during adulthood. In the case of the 

metabolite acetone, however, it should be noted that production from isopropanol metabolism 

would be only a small fraction of endogenous production from ketogenesis. Obviously, these are 

only model predictions, but while waiting for a real-life epidemiological validation (which 

would be very costly and difficult to perform), they form a reasonable and transparent basis for 

immediate decision making. 
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Example 3: Genetic Polymorphism 

The next example demonstrates the use of PBPK modelling, together with Monte Carlo 

techniques, to evaluate the impact of a genetic polymorphism for metabolism. In the example 

described here, the polymorphism of interest is for the enzyme paraoxonase. The PBPK model 

used in the analysis (Gearhart et al. 1993) describes exposure to parathion, its metabolism to 

paraoxon, and the inhibition of acetylcholinesterase by paraoxon. Paraoxonase is one of the 

enzymes responsible for the metabolic clearance of paraoxon. In vitro data on the two human 

alleles of paraoxonase (low and high activity) were used to develop distributions for the 

metabolism parameters in the PBPK model (Gentry et al. 2002). Monte Carlo simulations were 

then performed to generate the resulting distribution of predicted blood concentrations of 

paraoxon across a population, considering the variability in other pharmacokinetic parameters. 

Figure 4 displays the predicted distribution for the time-integrated (area under the curve) blood 

concentrations of paraoxon (mg-hr/L) across the sensitive population (dark bars), as compared to 

the “normal” population, following exposure to parathion at a dose of 0.033 mg/kg (Gentry et al. 

2002). The impact of genetic polymorphism is strongly dampened by rate-limiting 

pharmacokinetic effects, similarly to what was observed for methyl chloride (Johanson et al. 

1999). The calculation performed here lead to internal dose levels very different from those 

which would be obtained using naive “all or nothing” guessed estimates based solely on 

qualitative genotype considerations. 

7. A POSTERIORI ESTIMATION OF VARIABILITY USING BAYESIAN 

PBPK MODELING 

Purely predictive modelling, as described above, can be cross-validated by confronting its 

predictions (e.g., for plasma concentration of a substance) to data obtained of a sample of 

individuals. In the ideal case, data and predictions agree on average and in terms of variability 
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and no further model refinement is attempted. Yet, quite often, the predictions are less than 

“perfect” and may even be really poor (but publication bias reduces the visibility of that case). 

That may be the occasion to improve the model through some calibration or data integration 

procedure and learn something about the true determinants of variability in a population 

(Wakefield and Bennett 1996). However, some care should be taken to properly disentangle 

uncertainty from variability in that calibration process, while retaining the prior physiological 

knowledge afforded by PBPK modelling (Gelman et al. 1996). The "naive" approach consists in 

fitting individual subjects’ data separately, collecting the resulting individual parameter 

estimates and forming their average etc. That approach does not work and is actually incorrect if 

very precise parameter estimates cannot be obtained from the data (Beal and Sheiner 1982; 

Smith and Wakefield 1994). For ethical, feasibility or cost reasons, the data on individuals tend 

to be sparse in clinical pharmacokinetics or toxicokinetics. Such data usually lead to fairly 

uncertain parameter estimates and the so-called population approaches should then be used (Beal 

and Sheiner 1980).  

Population models, or multilevel models, were first introduced in the context of pharmacokinetic 

studies for drug development and evaluation (Sheiner 1984). Their objective is to obtain, from 

data on individuals, a quantitative description of the variability of the kinetics of a compound 

within a large population. The same structural (e.g., PBPK) model is used describe the data for 

each subject, and that the model parameters differ randomly between subjects (see Figure 5) 

(Bois et al. 1996a; Bois et al. 1996b). Such randomness characterises variability can be described 

by a multivariate probability distribution. In population models, information of each subject is 

reinforced by "borrowing strength" from the other subjects' data and the overall estimation 

process is improved. Individuals' metabolic clearance, for example, can be assumed to be log-

normally distributed around a "population mean", with a "population variance" which measures 

variability in the population. The population means and variances (one for each kinetic 

parameter supposed to vary between subjects) are aptly named "population" parameters. They 
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are estimated during the model calibration (data fitting) together with the parameters of each 

subject (Bois 2001). 

A number of methods are available to calibrate population models  (Beal and Sheiner 1982; 

Davidian and Gallant 1992; Mallet et al. 1988; Racine-Poon and Smith 1990). Bayesian 

approaches have emerged as the best suited for PBPK models, given the large amount of prior 

information they require (Bernillon and Bois 2000; Gelman et al. 1996). But as we have seen 

above, a large amount of that information is already encoded as prior distributions, and updating 

those distributions with system’s level data, is simply a matter of using Bayesian numerical 

methods such as Markov chain Monte Carlo simulations (Gelman and Rubin 1996). 

A number of applications of posterior Bayesian PBPK modelling have been published: on 

benzene (Bois et al. 1996b), butadiene (Mezzetti et al. 2003), carbaryl (Nong et al. 2008), 

chloroform (Lyons et al. 2008), dichloromethane (Bois 1999; David et al. 2006; Johanson et al. 

1999; Jonsson et al. 2001b; Jonsson and Johanson 2001a, 2003; Marino et al. 2006; Marino and 

Starr 2007), methyl chloride (Jonsson et al. 2001a), methyl mercury (Allen et al. 2007), 

nanoparticles (Péry et al. 2009), tetrachloroethylene (Bois et al. 1996a; Chiu and Bois 2006; 

Covington et al. 2007), toluene (Jonsson and Johanson 2001b; Vicini et al. 1999), and 

trichloroethylene (Bois 2000). Extension to questions of optimal design (Bois et al. 1999), 

medical image analysis (Brochot et al. 2006), or exposure reconstruction (Allen et al. 2007) have 

also been proposed.  

8. CONCLUSIONS 

The state of the art on PBPK modelling of inter-individual variability has advanced to the point 

of being a mainstream commercial activity for drug development. We have shown how the 

concepts and tools now available (generic PBPK models, applicable to many substances, coupled 

to databases of parameter distributions and QSAR models; MCMC software routines for 
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Bayesian data integration) can foster predictive toxicokinetics for environmental or occupational 

contaminants. Computation time is not an issue anymore, and the approach is being extended to 

toxicodynamics through the use of biology-motivated effect models, toward a true predictive 

toxicology applicable to very large number of chemicals. 
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FIGURE CAPTIONS 

Figure 1: Structure of a generic PBPK model of the mammalian body. 

Figure 2: The inter-correlation of covariates affecting drug clearance. 

Figure 3: Blood concentrations of isopropanol (IPA) and its metabolite acetone as a function of 

age for continuous inhalation exposure at 1 ppb. 

Figure 4: Paraoxon AUC distribution for the sensitive population compared to the AUC 

distribution for the “normal” population for a parathion dose of 0.033 mg/kg. 

Figure 5: Graphical representation of a toxicokinetic population model. Unknown quantities are 

in circles, known quantities in squares. At the individual level, exposure (E), time (t) and 

specific parameters () condition the data (y). The structural PBPK model, f, links E, t,  and y. 

Individual parameter values are randomly distributed in the population with population means µ 

and variances ∑2. Residual errors (measurement errors, modelling errors etc.) are lumped in the 

variance term 2. 
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FIGURES 

 

Figure 1: Structure of a generic PBPK model of the mammalian body. 
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Figure 2: The inter-correlation of covariates affecting a chemical’s clearance from the body, 

updated after (Jamei et al. 2009a). 
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Figure 3: Blood concentrations of isopropanol (IPA) and its metabolite acetone as a function of 

age for continuous inhalation exposure at 1 ppb. 
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Figure 4: Paraoxon AUC distribution for the sensitive population (black bars) compared to the 

AUC distribution for the “normal” population (white bars) in for a parathion dose of 0.033 

mg/kg. 
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Figure 5: Graphical representation of a toxicokinetic population model. Unknown quantities are 

in circles, known quantities in squares. At the individual level, exposure (E), time (t) and 

specific parameters () condition the data (y). The structural PBPK model, f, links E, t,  and y. 

Individual parameter values are randomly distributed in the population with population means µ 

and variances ∑2. Residual errors (measurement errors, modelling errors etc.) are lumped in the 

variance term 2. 

 


