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ABSTRACT 
 

Quantitative Structure-Property Relationship (QSPR) type methods have been up to now 
mainly devoted to biological, toxicological applications but their use to predict physico-
chemical properties is a growing interest. In this context, an original approach associating 
QSPR methods and quantum chemical calculations for the prediction of chemicals 
explosibility properties is presented here. 
Indeed, the new European regulation of chemicals named REACH implies the new assessment 
of a tremendous number of substances for their hazardous properties. But, the complete 
characterization of toxicological, ecotoxicological and physico-chemical hazards at 
experimental level is incompatible with the imposed calendar of REACH. Hence, there is a 
real need in evaluating capabilities of alternative methods for assessing hazardous properties 
as a screening process. 
This contribution focuses on models that have been established to predict accurately the 
thermal stability and electric spark sensitivity of a series of potentially explosive 
nitroaromatic molecules. Descriptors related to their molecular structure (topological, 
geometrical, electronic, quantum chemical), partially obtained from Density Functional 
Theory (DFT) calculations, were computed and statistical analyses (multilinear regressions) 
were performed to link the adequate molecular descriptors with the experimental properties. 
These first results coupling theoretical calculations and QSPR methods open new 
perspectives for the prediction of other physico-chemical properties. 

Introduction 
 
Within the context of the new European regulatory framework for the “Registration, Evaluation and 
Authorization of Chemicals” (REACH) [1] and its related Globally Harmonized System (GHS) for 
classification and labeling of chemical products [2], evaluation of properties based on predictive 
methods (computer-assisted chemical risk assessment or molecular modeling methods) are greatly 
encouraged. Indeed, all manufacturers, importers and suppliers of chemicals must identify and 
manage risks linked to the substances they manufacture and market (in quantity greater than 1 
tonn). It means that thousands of substances are under concern and have to be tested not only for 
their toxicological and environmental impact but also for their physico-chemical properties. Taking 
into account the above considerations, there is a real need for the development of alternative 
predictive tools to reduce unnecessary animal tests but also time-consuming, costly and potentially 
hazardous tests. As a minimum requirement of REACH, the potential effects to human health shall 
be assessed for the following physico-chemical properties: explosivity, flammability and oxidizing 
potential. In particular, the characterization of explosive property of molecules in terms of 
performance and sensitivity is quite complex and based on a series of tests aiming to evaluate 
detonation or deflagration behavior on one hand and the ability of compounds to release energy 
under various stimuli (heat, impact, shock, electric spark) on the other hand. In regulatory chemical 
frameworks (GHS or transport of dangerous goods for example), preliminary screening procedures 
and chemical knowledge are used prior to experience to estimate chemicals which may have 
explosive properties with a minimum of information. This consists of examining first the structure 
of the molecules and particularly the presence of well known “explosophore” groups (such as the 
nitro group) and to calculate the oxygen balance (OB). Then, the thermal stability of the substance 
is considered and can be generally evaluated by calorimetric methods. Indeed, according to the UN 
Manual of Test and criteria [3] (which is used in REACH) and to the GHS, further testing is not 



 
 

 

required if the exothermic decomposition energy is less than 500 J/g and the onset of exothermic 
decomposition is below 500 ºC. 
 
Some computational works and tools based on thermodynamic concepts already exist to estimate 
reactivity and chemical explosive hazards. For example, the American Society for Testing Materials 
(ASTM) proposed the CHETAH (Chemical Engineering Thermodynamics and Hazard Evaluation) 
software [4] which provides thermodynamic data (heat of formation, combustion…), estimated by 
means of the Benson group contribution method [5]. To evaluate these chemical hazards, CHETAH 
uses also empirical criteria like the oxygen balance developed in the 1940’s by Lothrop et al. [6]. 
Although user friendly and computationally inexpensive, this program can fail when Benson group 
values are missing or erroneous and do not take into account sensitivities of substances to the 
different initiation modes. Another approach is the Calculated Adiabatic Reaction Temperature 
(CART) [7] based on calculated activation energies. Nevertheless, these two methods are generally 
considered for more qualitative than quantitative uses through a hazard classification according to 
threshold values of their particular criteria [8]. 
 
The tool in development in the present project is based on a slightly different philosophy 
considering the explosives properties (in particular those considered in chemicals regulations, which 
include initiation sensitivities) through quantitative structure-property relationships (QSPR) models 
applicable for different classes of explosive substances (nitroalkanes, nitric esters, nitramines, 
aromatic nitrated derivatives…). This last methodology is already widely used in toxicology [9,10], 
biology [11,12] or drug design [13,14] and is in growing interest for predicting physico-chemical 
properties [15-17]. It consists in developing predictive models between the molecular structures and 
a macroscopic measurable property of substances. The final goal of our project is to integrate such 
predictive models, validated for the different explosive properties and classes of explosives, under a 
unique interface. From an input chemical structure, the different physico-chemical data will be 
calculated. Then the tool will help users to determine if further experimental investigations are 
needed to evaluate explosive hazards of potentially explosive substances. Of course, depending 
upon the structure and complexity of the developed QSPR models and descriptors, the different 
modules of the tool (input, descriptors calculations, output) will have to be adapted. For instance, 
depending of whether 3D structures or simple elemental compositions are needed, the way to input 
structures in the tool will be different. Graphically, an interface similar to the one used by the 
PubChem platform [18,19], which provides information on biological activities, could be built. 
Finally, such a screening tool will complement the existing experimental evaluation, in particular in 
the actual regulatory context concerning the management of chemicals. 
 
The first step in the development of this screening tool is dedicated to the development of QSPR 
models for a specific class among explosive substances which are nitroaromatic compounds. These 
compounds are considered with particular attention among energetic materials as their 
decomposition process is complex with different possible reaction paths [20,21]. In particular, 
molecules substituted in ortho position with the nitro group present specific decomposition channels 
[22]. Some eligible properties included in the management of potentially explosive substances have 
already been widely investigated. For instance, Keshavarz [23-26], Kamlet [27,28] and Rice [29,30] 
developed predictive models for the impact sensitivity of various classes of molecules. Our 
investigations have been focused on two less studied properties. The first one is the decomposition 
enthalpy taken as an indicator of thermal stability estimated in preliminary screening procedures 
before performing tests. The second one is the electric spark or electrostatic sensitivity which is not 



 
 

 

required in regulatory contexts concerning chemicals but remains in practice very important to 
consider all kinds of sensitivities of energetic compounds. We assume that these properties are less 
studied because only few large and reliable databases are available in the literature. The originality 
of the present work consists in the use of quantum chemical calculations (in particular the density 
functional theory) which allow to introduce chemical comprehensive descriptors in the developed 
predictive models to better understand explosion mechanisms.  
 
Methods 
 
QSPR methodology 
 
The quantitative structure-property relationship (QSPR) methodology is, as illustrated in figure 1, 
based on the development of a mathematical relation between a macroscopic property and the 
molecular structure for a particular set of similar compounds. 
 
Molecular scale properties, most of the time calculated, are used as descriptors of the chemical 
structure while the property values are provided from an experimental data set. Then, different 
approaches are used to set up the model: artificial neural networks [31], genetic algorithms [32] or 
statistical analyses such as multilinear regressions.  
 

 
Figure 1. QSPR principle dedicated to the prediction of explosive properties. 

 
If the computational parameters are very important for such an approach, the main limit for building 
up such chemical QSPR models remains the reliability of the experimental training data set. This is 
particularly important for the kind of properties under interest in this project. Only few 
experimental data are on disposal and they are sensitive to experimental conditions and protocols. 
Furthermore, to develop a valid and reliable QSPR model, this data set must present a homogeneous 
and representative distribution. This data set is ideally divided into two parts: a training set used to 
build the model and a validation set to estimate the predictivity of the obtained model. In this study, 
only few experimental data are available. So, a unique set has been used, models reliability being 
estimated from the cross-validation technique [33]. 
 
Molecular Descriptors 
 



 
 

 

A tremendous number of descriptors can be considered [33] to characterize the structures of 
molecules. For the compounds considered in this paper, up to 300 molecular descriptors have been 
calculated using CodessaPro software [34]. Different kinds of descriptors can be exhibited:  

- constitutional: number of specific atoms, functional group, bonds; 
- topological: atomic connectivity in the molecule giving information about size, 
composition and branching degree; 

- geometric: distances, angles, molecular volume; 
- charge related descriptors: distribution of charge in the molecule (partial atomic 
charges…); 

- thermodynamic: heat capacity, energies and their different contributions (vibrational, 
rotational, translational); 

- quantum chemical: binding information, molecular orbital energies, reactivity indices. 

Other descriptors like the oxygen balance or reactivity indices arising from DFT calculations (e.g. 
bond dissociation energy) have been calculated. Details of the descriptors used are available on 
request. 
 
Computational details 
 
All descriptors have been computed from quantum chemical calculated structures, i.e. structures 
have been firstly calculated using quantum chemical software and then loaded into CodessaPro 
software. 
 
Two quantum chemical approaches have been used: the density functional theory (DFT) and a 
semi-empirical one. The main difference between these two approaches is that DFT methods are 
based on the assumption that electron density is sufficient to characterize systems whereas semi-
empirical ones introduce approximations (based on empirical considerations) in the Hartree-Fock 
(HF) equations. Whereas semi-empirical methods consume less computer times, DFT methods 
include less (empirical) approximations ensuring better reliability in calculations. In practice, DFT 
methods are commonly considered as a good compromise between computer times and reliability.   
 
In this paper, DFT calculations were performed with the parameter-free PBE0 hybrid functional 
[35] and a 6-31+G(d,p) basis set by using Gaussian 03 [36] and the  semi-empirical AM1 (Austin 
Method 1) [37] as implemented in Hyperchem 7.0 [38]. The pertinence of the DFT level has been 
checked for such systems in ref [20,22]. AM1 is the most popular semi-empirical level for this kind 
of studies [39-42]. Structure optimization and harmonic frequency calculations have been 
performed at both levels and all structures have been checked to present no imaginary frequency, 
ensuring that all stationary points are stable species.  
 
Statistical analysis and evaluation of models 
 
All statistical analyses were computed using CodessaPro software [34,43]. The calculated multi 
linear regressions have the following form. 

 

∑+=
i

ii XaaY 0          (1) 

where Y is the property to predict, Xi are the molecular descriptors and ai the corresponding 
regression constants.  



 
 

 

The Best Multi Linear Regression (BMLR) procedure was used to obtain the most predictive 
models. This method consists in considering the most correlated pairs of orthogonal (i.e. not 
intercorrelated) descriptors and adding successively other orthogonal descriptors to give the best 
correlated model at higher ranks (i.e. using more descriptors). The final model is chosen as the 
equation providing the best correlation with experimental data and preventing, at the same time, 
against any over-parameterization.  
 
The reliability of the models were estimated through several parameters, such as the resulting 
coefficients R2 and the corrected R²cv (using the cross-validation technique [34]). The significance 
of each descriptor in the equations was validated by performing a Student t-test validation at a 95% 
confidence level. 
 
Once a reliable model is obtained, it can be used for the prediction of the property of compounds 
with similar molecular structures but out of the initial training set of molecules, maybe not yet 
synthesized. The model can also be a tool to better understand the property under study. 
 
Results and Discussion 
 
Development of QSPR models to predict thermal stability 
 
Thermal stability is one of the most important properties of energetic materials, since the amount of 
energy released during a decomposition process gives important information about chemical 
reactivity. Whereas experimental characterization is well defined, notably by calorimetric 
measurements [44] (temperature and heat of decomposition), until now, only few predictive models 
have been developed on these properties related to thermal stability. 
   
For instance, Figueiredo [45] and Yu [46] used QSPR type methods for the prediction of specific 
thermal decomposition properties of chromophores and polymers respectively. Kroon [47] used 
DFT calculations to estimate the decomposition temperature of some ionic liquids from the 
activation energies of the most likely thermal degradation reaction. Concerning the thermal stability 
of potentially explosive compounds, Grewer [48] demonstrated the influence of functional groups 
on decomposition temperatures (Tonset). More recently, correlations were highlighted between this 
property and weak bond dissociation energies for nitroalkanes, nitramines and nitric esters [49,50]. 
But, to our knowledge, Saraf [8] proposed the first QSPR type model considering nitroaromatic 
compounds with a low correlation of 0.6: 

 DMSrHPCCTonset 07.543.410360.827)( −−−=°      (2) 

where HPC is the highest positive charge, Sr an electron delocalizability index (calculated from 
molecular orbitals) and DM the dipole moment. In this last paper, decomposition enthalpy (-∆H) 
was also investigated and was estimated to be related to only the number of nitro groups in the 
molecule (nNO2) with an average absolute error of about 6%: 

 275)/( NOnmolkcalH ×=∆−         (3) 

Recently, Keshavarz proposed other QSPR type models based on constitutional descriptors for the 
prediction of the activation energy of thermolysis of nitroaromatics and nitramines leading to a 
correlation coefficient R²=0.87 [51,52]. 
 



 
 

 

 
Our paper presents the first robust models developed to predict the decomposition enthalpy of a set 
of 22 nitrobenzene derivatives (see table 1). These data have been obtained from differential 
scanning calorimetry (DSC) measurements from the single reference [53] to ensure their reliability 
since all data have been determined under the same experimental conditions. Nitroaromatic 
compounds are characterized by complex decomposition mechanisms [20,21], making the research 
of a simple indicator of thermal stability more difficult [49]. Then, a particular interest has been 
dedicated to the use of chemical comprehensive descriptors related to the decomposition of these 
nitroaromatic compounds.  
 
 
Table 1. Experimental [53] and predicted decomposition enthalpies (in kJ/mol) from QSPR model (equation 
5) of 22 nitrobenzene derivatives. 
 
Compound Molecular Structure Experimental Predicted Error (%) 

nitrobenzene 
NO2

  
339 319 -5.9 

1,2-dinitrobenzene 
NO2

NO2

 
518 592 14.3 

1,3-dinitrobenzene 

NO2

NO2 

586 578 -1.4 

1,4-dinitrobenzene 

NO2

NO2 

622 592 -4.8 

2-nitrotoluene 
NO2

 

329 352 7.0 

3-nitrotoluene 
NO2

 
284 315 10.9 

4-nitrotoluene 

NO2

 

318 313 -1.6 

2,6-dinitrotoluene 

NO2

NO2 

576 606 5.2 

3,4-dinitrotoluene 

NO2

NO2

 

666 607 -8.9 

2,4-dinitrotoluene 

NO2

NO2 

596 606 1.7 

 
 
 
 



 
 

 

 
Table 1. (continued) 
 
Compound Molecular structure Experimental Predicted Error (%) 

2-nitroaniline 

NO2

NH2

 

307 298 -2.9 

3-nitroaniline 
NO2

NH2  

314 309 -1.6 

4-nitroaniline 

NO2

NH2  

279 293 5.0 

2-nitrobenzoic acid 
NO2

COOH

 
297 317 6.7 

3-nitrobenzoic acid 

NO2

COOH 

298 312 4.7 

4-nitrobenzoic acid 

NO2

COOH  

304 267 -12.2 

2-nitrophenol 
NO2

OH

 

345 334 -3.2 

3-nitrophenol 
NO2

OH 

316 324 2.5 

4-nitrophenol 

NO2

OH  

300 314 4.7 

1-chloro-4-nitrobenzene 

NO2

Cl  

360 317 -11.9 

2,4-dinitrophenol 

NO2

NO2

OH  

662 657 -0.8 

2,4,6-trinitrophenol 

NO2

NO2

OH

O2N

 

1173 1167 -0.5 

 
In our previous work [54], a set of selected descriptors directly obtained from the quantum chemical 
calculations at DFT level was calculated. Some of them are related to the nitro group: C-NO2 
distance (dCN), C-NO2 dissociation energy (Ediss), electrostatic potential at the middle of C-NO2 
bond (Vmid) and nitro charge (QNO2). The others characterize the properties of the whole molecule: 



 
 

 

dipole moment (DM), mean polarizability (α), atomization energy (Eatom), ionization potential (IP), 
electron affinity (EA), electronegativity (χ), chemical hardness (η) and electrophilicity index (ω).  
 
Moreover, the more empirical molecular weight (Mw) and oxygen balance (OB) have also been 
integrated into the analysis. A first significantly correlated model (R²=0.91) has been obtained from 
this set of 14 selected descriptors. It consisted in the following six-parameter equation [54]: 
 

84.0,91.0²

2.9730.141.25337853.10304005033854
2 ==

+−+−−+=∆−

cv
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RR
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This first model presents the interesting behavior to distinguish the molecules among their number 
of nitro groups and associates chemical comprehensive descriptors like the dissociation energy, 
already considered in the prediction of the decomposition temperature of nitro compounds [49].  
 
It has to be noted that significant correlations have already been observed for descriptors arising 
from the so-called conceptual density functional theory (i.e. IP, EA, χ, η, ω) [55]. Contrary to 
classical constitutional descriptors (for instance, the classical oxygen balance [56]), they are 
developed to characterize molecular reactivity within the framework of DFT. Moreover, they 
present great interest in QSPR models to predict the properties of chemicals because they are able to 
distinguish isomers, their values being different from one isomer to another.  
 
In order to improve the reliability of the models, a more extended set of descriptors calculated from 
CodessaPro software have been investigated. This software allows one to include notably 
constitutional descriptors commonly used for the prediction of various properties of energetic 
materials, as done by Keshavarz for instance [23-26,51,52,57].  
 
Until now in our study, the descriptors have been obtained from DFT calculated structures but 
CodessaPro can also compute descriptors from structures calculated at the semi-empirical AM1 
level, less computer time consuming than DFT. This is the case for Katritzky’s models [39-42]. So, 
descriptors were computed from molecular structures calculated at both levels to confirm the 
pertinence of using DFT in this study [58].  
 
Only a slight decrease in correlation coefficients was observed when using DFT or AM1 (about 
0.02 in R²). Nevertheless, the descriptors integrated in each model are quite different upon the 
calculation level. In particular, the accuracy of the AM1 model was related to the good correlation 
of a particular topological descriptor (Wiener index) with the experimental decomposition enthalpy. 
In fact, AM1 models are mainly constructed on this descriptor which characterizes the degree of 
substitution on the aromatic ring. This descriptor does not need any advanced calculation level since 
it is based on the “skeleton” structure of the molecule, and is the same from semi empirical and 
DFT calculations.  
 
Finally, the DFT based model has been preferred in this study since it demonstrated the advantage 
to include molecular reactivity properties, in particular quantum calculated descriptors for which a 
semi empirical level does not ensure accuracy whereas DFT does. This last model, which will be 
described in the following, was more related to the chemical phenomena involved during the 
decomposition.  



 
 

 

 
 
In this analysis (based on DFT calculated structures), the BMLR analysis was used to select 
significant descriptors to build multilinear QSPR models. The success to develop QSPR models 
from the BMLR procedure can be linked to the choice of the best compromise between the number 
of descriptors in the models and their corresponding correlation coefficient R2 values. As described 
by Katritzky [40] and illustrated in figure 2, a breaking point is observed in the increasing of R² 
with the number of descriptors, among the equations built during the BMLR analysis.  
 

 
 

Figure 2. Defining of the optimum number of descriptors based on a “breaking point” rule. 
 
Consequently, the model corresponding to the breaking point considered in our study is the three-
parameter model: 
 

97.0,98.0²
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where nN is the number of N atom, BON,avg is the average bond order for N atom and EO,max is the 
maximum electrophilic reactivity index for a O atom. This last descriptor is a local conceptual DFT 
descriptor (also called Fukui index) characterizing the relative reactivity of atoms in a molecule.  
 
The interesting thing is that the three selected descriptors are related to thermal stability and thermal 
decomposition process of nitro compounds as they can characterize the presence of nitro groups, an 
indicator of explosive properties (as integrated in pre-evaluation in safety regulations [3]), and their 
ability to dissociate from the aromatic molecules.  
 



 
 

 

The predicted values (in table 1) demonstrated a strong correlation with experimental data 
(R²=0.98). Moreover, the predicted values discriminated between the number of nitro groups in the 
molecule, as observed by experimental ones (see figure 3). 

 
Figure 3. Plot of calculated decomposition enthalpies (in kJ/mol) versus experimental values 

according to equation (5) 
 
A larger data set, presenting a homogeneous and representative distribution of values and sufficient 
to have a separated validation set, is of course desirable to validate the reliability of any model, 
particularly when dedicated to so sensitive properties and compounds. Works in this direction are in 
progress by extending the data set. Nevertheless, the presented results, summarized in table 2 could 
predict decomposition enthalpy values for nitroaromatics by using quantum chemical descriptors 
calculated with DFT and CodessaPro. They are already satisfactory considering the complexity of 
the studied property and demonstrate the applicability of the method.  
 
Table 2. Comparison between our models developed for the prediction of the decomposition enthalpy 
 
Descriptors number Descriptors name R² R²cv molecules Comments 

6      (Equation 4) η, ω, α, IP, DM, Ediss 0.91 0.84 22 
BMLR on 14 descriptors; choice of the 

equation providing the best R²cv 

3      (Equation 5) nN, BON,avg, EO,max 0.98 0.97 22 
BMLR on more than 300 descriptors; 

“breaking point” rule 

 
 
Development of QSPR models to predict electric spark sensitivity 
 
Among the different kinds of possible initiation modes causing explosion of energetic materials 
(heat, impact, shock…), the electric spark sensitivity (EES) is not the most investigated through 
predictive approaches. This can be explained on the one hand because the evaluation of this 
property is not required in chemical regulatory context and on the other hand because of the 
complexity of the experimental evaluation in terms of variability of protocols. Indeed, this property 
is defined as the degree of sensitivity to electrostatic discharge when subjected to a high-voltage 
discharge from a capacitor and depends strongly on experimental protocol (e.g. configuration of 



 
 

 

electrodes). Moreover, the micro-mechanisms involved during this initiation are not definitely 
elucidated until now, but could be related to molecular structure, thermal reactivity, sensitivity to 
mechanic stimuli and parameter of detonation [59,60].   
 
Few studies are reported on this property. Zeman et al. established correlations between the electric 
spark sensitivity and molecular structure of nitramines [61]. They also demonstrated correlations 
with other properties like thermal decomposition parameters [59] or detonation velocity [62]. Wang 
also established correlations between experimental electric spark sensitivity values for nitro arenes 
compounds and theoretical values of detonation velocity and pressure using DFT methods [63]. He 
also found that the net charge of the nitro group and the lowest unoccupied molecular orbital have 
the most importante influence on the electric sensitivity. Nevertheless, to our knowledge, the only 
QSPR type study about the prediction of this sensitivity is Keshavarz’s work for a series of 
nitroaromatic compounds. This analysis using only constitutional descriptors led to the following 
four-parameter model with a correlation coefficient R²=0.77 [57]: 
 
 ORRnOnHOCES CRnnE ,/ 14.516.9724.0733.060.4 −++−=     (6) 

 
where nC and nO are the number of carbon and oxygen respectively, RnH/nO is the ratio of hydrogen 
atoms to oxygen ones and CR,OR characterizes the presence of alkyl (-R) or alkoxy (-OR) groups 
attached to an aromatic ring.  
 
More recently, the same author also proposed a predictive model with significant correlations 
(R²=0.94) [64] dedicated to nitramines by correlating EES with maximum detonation pressures, 
predicted from constitutional parameters. 
 
In the following presented works, still under study, a more extended set of descriptors was used, 
integrating descriptors allowing to distinguish isomers (contrary to those considered in Keshavarz’s 
work), in order to find a more efficient model from the same experimental data set. In fact, 
experimental data are different for one isomer to another and an accurate model is expected to be 
able to observe these variations. 
 
At this stage, the structures of 26 nitroaromatic molecules including polyaromatic ones (presented 
in table 3) have been calculated within the DFT framework at PBE0/6-31+G(d,p) level. As for the 
development of models previously described considering decomposition enthalpy, more than 300 
descriptors available in CodessaPro software were computed for each molecule and integrated in a 
multivariable analysis. 
 
The Best Multi Linear Regression analysis was performed and models up to 13 parameters can be 
computed. Using the simple “breaking point” rule, the optimum number of descriptors is 
determined to correspond to the following four-parameter equation (as illustrated in figure 4): 
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where nsingle is the relative number of single bonds and NC,max, QC,min and VC,min are the maximum 
nucleophilic reactivity index, the minimum partial charge (calculated from Zefirov’s method as 
implemented in CodessaPro [33]) and the minimum valence for a C atom, respectively. 

 
Table 3. Experimental [57] and predicted electric spark sensitivity (in J) from QSPR model (equation 7) of 
26 nitroaromatic compounds. 
 
Compound Molecular Structure Experimental Predicted Error (%) 

2,4,6-trinitrophenol 

NO2

NO2

OH

O2N

 

8.98 7.57 -15.7 

1,3,5-trinitrobenzene 

NO2

NO2O2N  

6.31 9.48 50.2 

1,8-dinitronaphtalene 
NO2 NO2

 

13.90 16.04 15.4 

2,4,6-trinitroaniline 

NO2

NO2

NH2

O2N

  

6.85 6.30 -8.0 

1,5-dinitronaphtalene 

NO2

NO2  

11.20 8.19 -26.9 

2,6-dimethoxy-3,5-dinitropyridine 
N

NO2O2N

MeO OMe

 

20.57 20.27 -1.5 

1,4,5,8-tetranitronaphtalene 

NO2

NO2

NO2

NO2  

8.26 3.87 -53.1 

2-methoxy-1,3,5-trinitrobenzene 

NO2

NO2

OMe

O2N

  

28.59 27.07 -5.3 

2,4-dimethyl-1,3,5-trinitrobenzene 

NO2

NO2O2N   

11.10 9.78 -11.9 

(1,3,5-trimethyl)trinitrobenzene 

NO2

NO2O2N
  

8.98 8.62 -4.0 

3,5-dinitropyridine-2,6-diamine 
N

NO2O2N

H2N NH2

 

12.40 10.87 -12.3 



 
 

 

1,3,7,9-tetranitro-10H-phenothiazine 
-5,5-dioxide N

H

S

NO2

O2N NO2

NO2

O O

 

5.78 6.89 19.2 

2,4,6-trinitrobenzene-1,3-diol 

NO2

NO2O2N

HO OH

  

12.30 11.43 -7.1 

Table 3. (continued) 
 
Compound Molecular structure Experimental Predicted Error (%) 

3-methyl-2,4,6-trinitrophenol 

NO2

NO2O2N

OH

 

5.21 8.17 56.8 

5,7-dinitro-1-(2,4,6-trinitrophenyl) 
-1H-1,2,3-benzotriazole 

NO2

N
O2N

N

N

O2N

NO2

NO2

 

6.50 7.32 12.6 

1,4,5-trinitronaphtalene 

NO2

NO2

NO2

 

10.97 9.46 -13.8 

1,1'-(1,2-ethendiyl) 
bis[2,4,6-trinitrobenzene] 

NO2

NO2

O2N

O2N

O2N

NO2

 

5.32 6.60 24.1 

1,3,5-trinitro-2-(2,4,6-trinitrobenzyl) 
benzene 

H2
C

NO2

O2N

NO2 O2N

O2N

NO2

 

4.10 4.53 10.5 

2-chloro-1,3,5-trinitrobenzene 

NO2

NO2

Cl

O2N

 

6.71 5.90 -12.1 

N,N-bis(2,4,6-trinitrophenyl)amine 
H
N

NO2

O2N

NO2 O2N

O2N

NO2

 

5.02 6.70 33.5 

2,4,6-trinitrobenzene-1,3-diamine 

NO2

NO2O2N

H2N NH2

 

10.97 12.96 18.1 

(1,3,5-triamino)trinitrobenzene 

NO2

NO2O2N

H2N NH2

NH2  

17.75 17.82 0.4 

2,2'4,4',6,6'-hexanitro-1,1'-biphenyl 

NO2

O2N

NO2 O2N

O2N

NO2

 

5.03 4.92 -2.2 

1,3,7,9-tetranitro-10H-phenoxazine 
N
H

O

NO2

O2N NO2

NO2  

5.12 6.18 20.7 



 
 

 

2-methyl-1,3,5-trinitro- 
4-[(2,4,6-trinitrophenyl)thio]benzene 

S

NO2

O2N

NO2 O2N

O2N

NO2

 

5.71 7.27 27.3 

2,4,6-trinitrotoluene 

NO2

NO2O2N
 

6.85 6.25 -8.8 

 

I  
 

Figure 4. Defining of the optimum number of descriptors based on a “breaking point” rule. 
 
In this model, we can assume that the three last descriptors of the model are addressing the carbon 
involved in the C-NO2 bond that is the most liable to break. Since the loss of this NO2 group is 
commonly considered as the rate-limiting step of decomposition of nitroaromatic compounds, the 
selection of these descriptors is chemically understandable and pertinent to predict correctly the 
electric spark sensitivity, an initiation mode of the explosive decomposition. 
 

 



 
 

 

Figure 5. Plot of calculated electric spark sensitivity (in J) versus experimental values according to equation 
7 (in blue plain circles) and Keshavarz’s model [57] (in wide circles). 

 
Investigation about this property is still in progress, to analyze the whole available data set (model 
keshavarz) and to investigate all the descriptors used for thermal stability (e.g. conceptual DFT 
descriptors, bond dissociation energy). But this first model already presented an improvement in 
predictivity from Keshavarz’s model (R²=0.90 vs. 0.77, see figure 5).  
 
Conclusion 
 
Two physico-chemical properties of substances related to the explosibility property of nitroaromatic 
compounds have been investigated in Quantitative Structure-Property Relationship (QSPR) studies: 
decomposition enthalpy and electric spark sensitivity. Quantum chemical calculations have been 
performed to compute the molecular structures of the studied compounds from which molecular 
scale descriptors were computed. Different kinds of descriptors were investigated: constitutional, 
topologic, geometric, electronic and quantum chemical.  
 
If the obtained models need consolidation notably in terms of validation using extended data sets, 
they already upgraded the existing models up to R²=0.98 and 0.90, for the prediction of 
decomposition enthalpy and the electric spark sensitivity respectively. Moreover, they integrate 
descriptors related to the C-NO2 bond and represent the decomposition sites. 
 
Once strongly validated models are obtained, they will be integrated in a global tool for the 
management of chemical explosive hazards. Its development is in the line of the search of new 
methods (required by REACH), not replacing but complementary to experimental tests, able to 
provide a first evaluation of hazards and to guide to further experimental investigation if necessary. 
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