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ABSTRACT 

Many environmental endocrine disrupting compounds act as ligands for nuclear receptors. 

Among these receptors, the human pregnane X receptor (hPXR) is well described as a 

xenobiotic sensor to various classes of chemicals including pharmaceuticals, pesticides and 

steroids. To assess the potential use of PXR as a sensor for aquatic emerging pollutants, we 

employed an in vitro reporter gene assay (HG5LN-hPXR cells) to screen a panel of 

environmental chemicals and to assess PXR active chemicals in (waste) water samples. Of the 

57 compounds tested, 37 were active in the bioassay and 10 were identified as new PXR 

agonists: triazin pesticides (promethryn, terbuthryn, terbutylazine), pharmaceuticals 

(fenofibrate, bezafibrate, clonazepam, medazepam) and non co-planar PCBs (PCB101, 138, 

180). Furthermore, we detected potent PXR activity in two types of water samples: passive 

polar organic compounds integrative sampler (POCIS) extracts from a river moderately 

impacted by agricultural and urban inputs and three effluents from sewage treatment works 

(STW). Fractionation of POCIS samples showed the highest PXR activity in the less polar 

fraction, while in the effluents PXR activity was mainly associated with the dissolved water 

phase. Chemical analyses quantified several PXR active substances (i.e. alkylphenols, 

hormones, pharmaceuticals, pesticides, PCBs, bisphenol A) in POCIS fractions and effluent 

extracts. However, mass-balance calculation showed that the analysed compounds explained 

only 0.03 % and 1.4 % of biological activity measured in POCIS and STW samples, 

respectively. In effluents, bisphenol A and 4-tert-octylphenol were identified as main 

contributors of instrumentally-derived PXR activities. Finally, the PXR bioassay provided 

complementary information as compared to estrogenic, androgenic and dioxin-like activity 

measured in these samples. This study shows the usefulness of HG5LN-hPXR cells to detect 

PXR active compounds in water samples, and further investigation will be necessary to 
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identify the detected active compounds. Keywords: Reporter bioassays, endocrine disrupters, 

passive sampling, wastewater. 

INTRODUCTION 

Anthropogenic activities lead to a continuous contamination of aquatic environment by a wide 

variety of chemicals. Among them, the so-called endocrine disrupting compounds (EDCs) can 

mimic or alter the action of endogenous hormones, through multiple mechanisms of action as 

they can interfere with the synthesis, transport, action, metabolism and excretion of natural 

hormones, which control homoeostasis, development and reproduction functions [1]. 

Abnormalities linked to EDCs exposure has been several times observed in aquatic 

environment, such as disrupted vitellogenin synthesis or development of ovo-testis in male 

fish [2]. In this context, characterization and identification of aquatic contamination by EDCs 

has become a major issue for the last decade. To tackle this challenge, the recent development 

of integrated bio-analytical approaches using in vitro bioassays combined to chemical 

analyses has proven powerful methodology to detect and identify bioactive compounds within 

complex environmental samples [3]. Particularly, in vitro reporter gene bioassays based on 

the mechanisms of action of chemicals (e.g. hormone receptor activation) serve as screening 

tools for sensitive and specific detection of hormone-like activities in complex samples. 

To date, in vitro bio-analytical assessment of EDCs has mainly concerned estrogen receptor 

(ER) and androgen receptor (AR) mediated activities [4-6]. However, these bioassays do not 

take into account large diversity of EDCs since several emerging contaminants, such as some 

pharmaceutical compounds, are not ligands of these receptors. Apart from ER and AR, other 

key nuclear receptors (NRs) such as pregnane X receptor (PXR) [7], peroxisome proliferator-

activated receptor (PPAR) [8] or glucocorticoid receptor (GR) [9], are known to be directly 

activated by environmental contaminants, and thus can be potentially used as xenobiotic 
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sensors for environmental bio-analytical purpose. Among them, the PXR, also called steroid 

and xenobitic receptor (SXR) or pregnane activated receptor (PAR), is of high interest for 

such purpose since it has been shown to be activated by a diversity of environmental ligands 

such as steroids, pharmaceuticals, pesticides, alkylphenols, polychlorobiphenyls (PCBs) and 

polybromodiethylethers (PBDEs) [10-17].  

The PXR is an orphan NR because no endogenous ligand with high affinity has been 

identified so far [18]. As a nuclear receptor, PXR acts as a transcription factor. After ligand 

binding, it functions as an heterodimer with the retinoid X receptor (RXR), in a non 

permissive way [19]. It is mainly expressed in the liver and the intestine, the main organs 

involved on the metabolism of endogenous and exogenous compounds, where it plays a 

crucial role in the regulation of genes involved in xenobiotic detoxification. PXR controls the 

transcription of phase I cytochrome P450 (CYP) genes (e.g. CYP3A4, -2B6, -2C8, -2C9 and -

2C19), phase II conjugating enzymes (e.g. UDP-glucuronosyltransferases and glutathion-S-

transferase), as well as phase III transporter genes (e.g. MDR-1 and MRP-2 multidrug 

resistance proteins) [20]. In addition, PXR is also activated by endogenous ligands, notably 

bilary acids, pregnanes and hormones and thereby regulates the transcription of CYP7A and 

oatp2 transporter involved in cholesterol homeostasis and tissue protection from potent toxic 

endogenous compounds [21]. Overall, the essential biological role in both xenobiotic and 

endogenous metabolism regulation together with its ability to directly interact with various 

environmental chemicals make the PXR a toxicologically and environmentally relevant target 

for EDCs. 

The aim of this study was to explore the potential use of a recently described human PXR 

(hPXR) reporter gene bioassay [12] for the detection of EDCs in the aquatic environment. 

This in vitro bioassay is based on cultured HeLa cells that permanently express the luciferase 
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reporter gene under the control of a chimeric hPXR (HG5LN-hPXR cells), and has been 

shown to sensitively respond to several pesticides [12], as well as antiestrogens, 

mycoestrogens and phthalates [14]. In the present study, in order to characterize the activity 

of a broader range of environmental contaminants, more than 60 environmentally occurring 

chemicals including pharmaceuticals, pesticides, plasticizers and persistent organic pollutants 

(POPs) were tested in this in vitro system. In addition, the detection of hPXR ligands in 

different effluent samples and polar organic compound integrative samplers (POCIS) extracts 

from freshwater sites has been investigated. The detected biological responses were compared 

to targeted chemical analyses by using mass balance calculation in order to identify candidate 

hPXR ligands in active samples. 

 

MATERIALS AND METHODS  

Chemicals and reagents 

All standard chemicals listed in Tables 1-3 were purchased from Sigma Aldrich (St Quentin-

Fallavier, France), except PCB congeners that were from LGC standards (Molsheim, France). 

Luciferin, 3-(4,5-dimethylthiazol-2-ol)-2,5-diphenyltetrasodium bromide tetrazolium (MTT), 

methanol (MeOH) and dimethylsulfoxide (DMSO) were also purchased from Sigma-Aldrich 

(St Quentin Fallavier, France). 

In vitro bioassays  

Cell culture  

The HG5LN-hPXR cell line results from a two-step stable transfection [12]. As a first step, 

Hela cell were stably transfected with a GAL4RE5-BGlob-Luc-SVNeo plasmid, leading to 
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the HG5LN cell line which expresses constitutively luciferase activity. Then, HG5LN cells 

were stably transfected, with the pSG5-GAL4(DBD)-hPXR(LBD)-puro plasmid to obtain the 

HG5LN-hPXR cell line. The HG5LN cell line was used to assess toxic or unspecific effects 

on luciferase in the bioassay, hence providing information on the specificity of hPXR 

activation in HG5LN-hPXR cells. 

Both cell lines were routinely cultured in a 5 % CO2 humidified atmosphere at 37°C in 

Dulbecco’s Modified Eagle’s Medium (DMEM) containing phenol red (Sigma-Aldrich, St 

Quentin Fallavier, France) and supplemented with 5% fetal calf serum (FCS), 1% 

nonessential amino acids, penicillin/streptomycin (50 U/mL each) and 1 mg/mL G418 (all 

purchased from Invitrogen, Cergy Pontoise, France). Additionnaly, 0.5 µg/mL puromycin was 

added in HG5LN-hPXR cell medium. 

Luciferase assay 

The cells were seeded in 96-well white opaque culture plates (Greiner cellStar ; D. Dutscher, 

Brumath, France) at a density of 1 x 10
5
 cells per well in 100 µl of DMEM without phenol 

red, supplemented with 6% dextran-coated charcoal-treated fetal calf serum (DCC-FCS). 

After 24 h, a range of concentration of compounds to be tested was added to the culture 

medium in triplicates and cells were then incubated for 16 h. For environmental samples, cells 

were exposed to serial dilution of extracts. At the end of exposure, the medium was removed 

and 50 µl per well of medium containing 0.3 mM luciferin were added. Five minutes later, 

necessary for luciferin to diffuse into the cell and to produce a stable luminescence signal, the 

intact living cells luminescence was measured in for 2 seconds per well with a microtiter plate 

luminometer (MicroBeta, PerkinElmer SAS, Courtaboeuf, France).  

Cytotoxicity assay 
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In order to assess the effect of test compounds on cell viability in HG5LN-hPXR cells, the 

metabolism of 3-(4.5-dimethyl-thiazol-2-yl)-2.5diphenyl tetrazolium bromide (MTT), was 

measured. After luciferase assay, culture medium containing the luciferin was removed and 

replaced by 100µl of DCC-FCS with 0.5 mg/mL of MTT. Cells were incubated for 3h. In 

metabolically active cells, MTT is reduced by the mitochondria onto a blue formazan 

precipitate, which was solubilised by adding 80 µl of isopropanol and agitation for 30 min. 

Plates were then read at 570 nm against a 640 nm reference wavelength on a microplate 

reader (KC-4, BioTek Instruments, France). Cell viability was expressed as a percentage of 

the control value. By using the MTT assay, no significant cytotoxic effects of chemicals were noted 

at the concentrations tested in luciferase assays. 

Other in vitro bioassays 

The estrogenic, (anti-)androgenic and dioxin-like activities of the extracts were assessed by 

using three in vitro bioassays based on marker gene activation in the MELN, MDA-kb2 and 

PLHC-1 cell lines, respectively. The MELN cells consist of the human MCF-7 cells that were 

stably transfected by the luciferase reporter gene controlled by endogenous estrogen receptor 

alpha (ER ) [22]. The MDA-kb2 cell line (ATCC, #CRL-2713) was derived from the MDA-

MB-453 human breast cancer cells. They were stably transfected by a MMTV promoter-

luciferase plasmid construct, which is under the control of endogenous androgen receptor 

(AR) and glucocorticoid receptor (GR) [23]. The fish hepatic PLHC-1 cell line (ATCC, 

#CRL-2406) was described by Ryan and Hightower [24]. Protocols for routine cell culture 

and environmental sample assessment has been reported in details previously [25]. Briefly, in 

the MELN and MDA-kb2 bioassays, cells were exposed for 16 h and processed for luciferase 

activity assay as described above. In the PLHC-1 bioassay, cells were exposed for 4 h (PAH-
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like activity) and 24 h (dioxin-like activity) and were then processed for 7-ethoxyresorufin-O-

deethylase (EROD) activity assessment in intact cells.  

Environmental samples 

Wastewater effluents 

Three sewage water effluents (SWE), called A, B and C, were sampled in the South West of 

France at three different stations: effluent A was a paper mill effluent; effluent B was sampled 

at the outlet of an urban wastewater treatment plant which serves a catchment of about 

150,000 equivalent/inhabitant population equivalent, and ensured the treatment of mainly 

domestic sewage; effluent C was a mix of sewage effluents A and B.  

Effluent extracts were prepared as summarized in figure 1. Briefly, a part of each effluent was 

filtered on GFF filters immediately after collection. Then, liquid/liquid extractions were 

performed on both the filtered fraction and the crude fraction of each effluent (A, B and C). A 

volume of 250 mL of each fraction was extracted 3 times by shaking with 50 mL of 

dichloromethane. The total extract was dried with anhydrous sodium sulfate. It was 

concentrated with a rotary evaporator, and then under a gentle flow of nitrogen and 

transferred into 200 µL of methanol. Procedural blank using ultra pure water was also 

prepared in the same conditions in order to test the potential influence of the extraction 

process on bioassay responses. Each extract was used for bioassay and chemical analyses. 

 

POCIS extracts 

POCIS samplers (version for sampling pharmaceuticals) were deployed in May 2007 in the 

Baïse River (South West of France) during 1 month. This site is under mixed anthropogenic 

pressures and is classified as good quality water. POCIS were provided by Exposmeter 

(Tavelsjö, Sweden). They contain 200 mg of Oasis HLB sorbent enclosed between two 
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polyethersulfone (PES) membranes. The membranes, which confine the sorbent, are 

compressed between two metal disks (5.1 cm ID, 8.9 cm OD). The total exchanging surface 

area of the membranes is 41 cm2. The ratio surface area to mass of sorbent is about 200 cm2/g. 

After exposure, each POCIS was rinsed with ultra pure water to remove any material present 

on the outer surface of the membranes (particles and biofilms). The metal disks were 

disassembled and the membranes were detached from the disk. The sorbent was carefully 

transferred into an empty glass SPE tube by rinsing it with ultrapure water and then dried by 

applying vacuum for 1 hour. The organic compounds were eluted in 3 fractions: a first 

fraction (F1) of 10 ml of dichloromethane, a second fraction (F2) of 10 ml of a 

dichloromethane - methanol mixture (50:50 v/v) and a third one (F3) of 10 ml of methanol. 

After elution, extracts were evaporated to complete dryness and dissolved in 200 µl of 

methanol. Each of the three fractions was assessed by bioassays and chemical analyses.  

 

Chemical analysis  

Pharmaceuticals, alkylphenols, and a part of pesticides (phenylurea herbicides) were analyzed 

by LC/MS/MS. PAHs, hormones and remaining pesticides (triazines, organophosphate and 

pyrethrenoid pesticides) were analyzed by GC/MS. PCBs and organochlorinated pesticides 

were analysed by GC/ECD. The analytical procedures were adapted from Togola and 

Budzinski [26] for the pharmaceuticals, Labadie and Budzinski [27] for the hormones, 

Budzinski et al. [28] for the PAHs, Alder et al [29] for the pesticides, Cailleaud et al [30] for 

the PCBs and Cailleaud et al [31] for the alkylphenols. Hydrophilic compounds 

(pharmaceuticals, phenylureas, triazines, organophosphate and pyrethrenoid pesticides) have 

been analyzed only on dissolved phase of effluent samples. 

Data analysis 
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Bioassay data modeling  

The Regtox 7.5 Microsoft Excel
TM

 macro, freely available at http://eric.vindimian.9online.fr, 

and using the Hill equation [32], was used to model sigmoid dose-response curves and to 

calculate efficient concentrations (i.e. EC20 and EC50, corresponding to concentrations of 

chemical and samples that induced 20 and 50% of maximal luciferase activity, respectively). 

For compounds that provided incomplete dose responses curves, i.e. that does not reached a 

plateau, the Hill parameter for maximal effect was fixed at 100% (maximal response given by 

the positive control SR12813) before modelling of the data. 

Mass balance calculations 

Toxic equivalent activities derived from chemical analysis (Chem-TEQ) in environmental 

samples were calculated according to the following equation: TEQ = ∑ (Ci × SREFi), where, 

for a given chemical i, Ci is the measured concentration in a sample and SREFi is the inducing 

equivalent factor relative to the reference ligand SR12813 (IEFi = EC20 of reference 

compound / EC20 of test compound, on mass basis) and expressed as SR12813-equivalent 

quantities (SREQ). SREFi were determined by establishing dose-response curves for 

individual standard chemicals according to the criteria proposed by Villeneuve et al [33] (i.e. 

parallel dose response curves and equal efficacy). Thus, for all compounds, including those 

with incomplete dose response curves, we fixed the minimal and maximal activity and the 

slope as identical to that of SR12813 before modelling of experimental data (data not shown). 

The biological toxic equivalent activities (Bio-TEQ) in environmental samples were 

calculated as the ratio of EC20 of reference compound (expressed as g/L) to that of the sample 

expressed as EQ-L water/L (equivalent litre of water sample per litre). For the samples that 

yielded incomplete dose response curves, we fixed the minimal and maximal activity and the 

slope as identical to that of SR12813 for experimental data modelling. Although fixed-effect 

http://eric.vindimian.9online.fr/
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level modelling often assumes an extrapolation of experimental data, it allows standardised 

treatment of all data and thus EC20 comparison between samples and reference compounds. 

Statistics 

Significant luciferase induction in treated cells as compared to solvent treated cells was 

determined by one way analysis of variance (ANOVA) followed by a Dunnett’s unilateral 

posthoc test. A value of p < 0.05 was considered significant. 

 

RESULTS  

Activation of hPXR by reference and environmental chemicals 

In order to validate the use of the hPXR bioassay in our experiments, four reference hPXR 

ligands were first tested (Fig. 2). They induced potent and complete dose-response curves 

with sensitivities that were very similar than those previously reported in the same cell model 

[12]. The specific hPXR-mediated activity by these ligands was confirmed by a lack of effect 

on luciferase expression in the parental HG5LN cell line that does not express hPXR (Fig 2b). 

These cells were then further used to assess the activity of a panel of about 60 compounds that 

belong to different classes of contaminants. In each group of compounds, some chemicals, 

which PXR activity has been previously reported in this or other cell model, were also 

assessed in order to determine their hPXR potency in our test conditions. 

Activation of hPXR by pesticides 

Sixteen pesticides from different classes (organochlorine, triazin, urea) were screened (Tab. 

1). Oxadiazon, pretilachlore, o,p’-DDT and linuron activated the luciferase with the same 

induction pattern (i.e. in terms of affinity, maximal activity and specifity) as previously 

reported by Lemaire et al. [12] by using the same cell line (Fig. 3 and Tab. 1). The 
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organochlorine lindane and endosulfan were strong hPXR activators in HG5LN-hPXR cells, 

while triclosan, terbutylazine, terbuthryn and promethryn were found as weak to moderate 

hPXR activators (Fig 3a). Moreover, terbutylazine, terbuthryn and promethryn, could be 

considered as specific hPXR activators since they did not alter luciferase expression in 

HG5LN cells, whereas triclosan was slightly toxic in this cell line as indicated by a decrease 

of luciferase (Fig 3b). Finally TBT, chlorotoluron, metoxuron, chlorosulfuron, nicosulfuron 

and hexachlorobenzene were found as inactive compounds (Tab. 1). 

Activation of hPXR by pharmaceuticals 

Studies on in vitro hPXR transactivation by environmental pharmaceuticals are scarce. Here, 

we have tested hPXR activation by 21 compounds that were selected among those commonly 

found in surface waters (Tab. 2). Ten out of 21 environmental pharmaceuticals were specific 

hPXR activators in HG5LN-hPXR cells (Fig 4a, Tab. 2), with induction patterns varying 

according to effective concentration and maximal levels of luciferase induction. Mevastatin 

and fenofibrate were the most potent hPXR activators as they induced more than 60% of 

luciferase activity at 10 and 3 µM, respectively. Diclofenac, tamoxifen, medazepam, 

carbamazepin, triazolam, diazepam, clonazepam, and bezafibrate were weak to moderate 

hPXR activators as they induced partial dose-response curves at relatively high concentrations 

(3 to 100 µM) (Fig. 4a, Tab. 2). Ketoprofen also slightly induced luciferase at 100 µM; 

however luciferase induction by this compound is likely to be non specific of the hPXR as it 

similarly occurred in HG5LN cells (Fig 4b). Finally, loprazolam, bromazepam, alprazolam, 

naproxen, ibuprofen, aspirin, caffein, flumazemil, pravastatin and sulfamethoxazole were 

found inactive in HG5LN-hPXR cells (Tab. 2). 

Activation of hPXR by POPs 
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Because of the ubiquitous character of PCBs and PAHs as environmental contaminants, we 

looked at hPXR activation by 10 dioxin-like and non dioxin-like PCBs and 4 toxic PAHs. 

Strong luciferase induction was observed with the non dioxin-like PCBs congeners #101, 138, 

153 and 180, albeit at relatively high concentrations (EC50s > 10 µM) (Fig. 5a, Tab. 3). In 

HG5LN cells, PCB101, PCB153 and PCB180 were also able to slightly increase luciferase 

(i.e. by two-fold for PCB101), thus suggesting that a small part of their induction potency in 

HG5LN-hPXR was due to non specific activation of luciferase at high concentrations (Fig. 

5b). PCB118 was found to weakly increase luciferase in both HG5LN-hPXR and HG5LN 

cells and thus should not be considered as an hPXR activator (Fig. 5). Finally, the other PCBs 

#28, 77, 126 and 169 as well as the 4 PAHs tested, i.e. benzo[k]fluoranthene, fluoranthene, 

naphtalene, and 3OH-benzo(a)pyrene, were unable to activate the hPXR after a 24 h exposure 

at concentrations up to 1 µM (Tab. 3).   

Activation of hPXR by other compounds 

Other emerging pollutants, including parabens, antioxidants and plasticizers, were tested 

(Tab. 3). Among them, triphenyl phosphate (TPP), which is used as plasticizer and fire 

retardant, induced partially (Fig. 5a) but specifically (Fig 5b) the hPXR. Conversely, no effect 

was noted with parabens and butylated hydroxytoluene (BHT). 

 

Detection of hPXR activities in environmental samples 

In order to assess the environmental occurrence of hPXR ligands in surface waters, the hPXR 

bioassay was applied to different water samples issued from a contaminated river (POCIS 

extracts) and three sewage water effluents. 

Activation of hPXR by POCIS extracts 
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POCIS samplers were deployed for 1 month in the Baïse River, which is under agricultural 

and urban pressure, and were then extracted and fractionated onto 3 fractions of increasing 

polarity (F1, F2, F3), as described in Material and Methods. Biological analysis showed that, 

among the 3 fractions, F1 and F2 expressed a PXR activity (Fig. 6a), whereas protocol blanks 

were inactive (data not shown). F1 and F2 gave an incomplete dose response curve with the 

highest activation for F1 (61 ± 4 %) and a moderate activation for F2 (38 ± 1 %) (Fig. 6a). In 

HG5LN cells, no significant alteration of luciferase activity was noted (Fig. 6b). These results 

show that POCIS extracts contained specific hPXR ligands that were likely to be semi-polar 

rather than polar compounds (i.e. hormones). 

Targeted chemical analyses of POCIS fractions showed the presence of PXR ligands such as 

several pharmaceuticals compounds, pesticides, alkylphenols and hormones. The table 4 

summarizes those chemicals that were identified as hPXR ligands among all chemicals 

analysed; a detailed analytical evaluation of these samples has been reported elsewhere ([34] 

and Tapie et al, in prep). On the basis of SR12813-Equivalent Factors (SREF) for individual 

compounds determined in the present study, instrumentally derived SR12813-equivalents 

(Chem-SR-EQ) were calculated and compared to SR-EQ determined by the bioassay (Bio-

SR-EQ). The results (Tab. 4.) showed that, on an additive model basis, the targeted 

compounds weakly contributed (<0.1%) to Bio-SR-EQs in the samples and the detected PXR 

activities were likely due to other non analysed compounds. 

Activation of hPXR by effluent extracts 

All three effluent samples induced significant activation of luciferase activity in a dose-

dependent (Fig. 7a) and specific (Fig. 7b) manner. Procedural blanks were inactive in 

HG5LN-hPXR cells (data not shown). The paper mill effluent (site A) was the most active 

site, followed by the mixed industrial/urban effluent (site C) and then by the urban effluent 
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(site B). When comparing the response of crude effluent extract to that of filtered effluent 

extracts, no significant difference could be noted on hPXR activation, suggesting that the 

detected compounds were associated with the soluble phase of the samples. Only a toxic 

effect was noted for the crude extract of site A (sample A-c in Fig 7), which led to a decrease 

of luciferase activity at higher sample concentrations (not illustrated).  

Targeted chemical analyses of the samples showed the occurrence of several compounds that 

were hPXR ligands such as pharmaceuticals, hormones, pesticides, PCBs, bisphenol A (BPA) 

and 4-tert-octylphenol (4tOP) (Tab. 5). Mass balance calculation showed that the quantified 

chemicals explained only a few part of the biological activity determined by the bioassay 

(0.13-1.42%). Nevertheless, it was noted that BPA, which was among the most abundant 

contaminants, contributed to more than 95 % of the total Chem-SR-EQs at sites A and C, and 

to 10 % at site B. In this later site, an urban one, 4tOP contributed to more than 62 % of the 

calculated Chem-SR-EQs. Pharmaceuticals, hormones and pesticides (i.e. diuron and linuron) 

were also present at significant concentrations in the urban and mixed effluent (sites B and C), 

but they were identified as minor contributors to the Chem-SR-EQs. Moreover, effluent 

filtration had very low influence on Chem-SR-EQ determination, which confirmed the 

biological assessment and strengthened the hypothesis that the detected PXR ligands were 

mainly present in the dissolved phase. However, except for BPA and 4tOP, the compounds 

that mainly contributed to biological activities remain to be identified.  

Comparison with ER, AR and AhR activities 

To get further knowledge of the contamination of the samples by EDCs, we measured 

estrogenic, (anti)androgenic and AhR activities by using in vitro bioassays and compared 

them with hPXR activity (Tab. 6). In POCIS fractions, estrogenic and PAH-like activities 

were mainly detected in F1 and to a lesser extent in F2, yielding the same elution pattern as 
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hPXR activities. No (anti)androgenic or TCDD–like activity was detected in the three POCIS 

fractions. In effluents samples, ER and PAH-like activities were detected in all samples while 

a significant AR activity was also present at site C (Tab. 6.). Effluent filtration had either no 

influence at site A or enhanced ER and AR activity at sites B and C, thus showing that the 

detected active substances were in the soluble phase. Conversely, PAH-like activities were 

higher in crude than in filtered samples suggesting that the detected chemicals were mainly 

associated with the particulate fraction. Unlike POCIS fractions, profiles of ER activities in 

effluent samples differed from patterns of PXR responses, i.e. in a decreasing order, for 

estrogenic activity: site C > site B > site A, whereas for PXR activity: site A > site C >> site 

B. These results suggest that different chemicals were detected by the two bioassays, and 

stress the view that PXR activity provided additional information about chemical 

contamination. 

 

DISCUSSION 

By using a recently developed stable reporter gene bioassay, we report i) the characterization 

of the hPXR transactivation potency of a large panel of environmental chemicals, including 

emerging pollutants that were not tested before, and ii) the occurrence of hPXR ligands in 

effluents and surface water samples. 

hPXR is activated by various chemicals occurring in aquatic environment 

Of the 53 substances tested on HG5LN-hPXR cells, 37 were found active and 10 were 

identified as new hPXR agonists. These include three triazin pesticides (prometryn, terbutryn, 

terbutylazine), four pharmaceuticals (fenofibrate, bezafibrate, clonazepam, medazepam) and 

three PCB congeners (PCB 101, 138 and 180).  
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Pesticides and human pharmaceuticals were selected as relevant emerging contaminants that 

are increasingly detected in surface waters. Several pesticides have been described as potent 

PXR activators, among which organochlorinated pesticides, chloroacetanilides, pyrimidines 

and azoles fungicides were the most active ones [12,35]. In complement to these previous 

studies, we report here three triazin pesticides as hPXR modulators in HG5LN-hPXR cells. 

These triazin pesticides are widespread aquatic contaminants and among the most frequently 

detected pesticides in surface waters [36,37]. Accordingly, they were also detected in POCIS 

extracts from the Baïse River in the present study (Table 4). 

A number of human pharmaceutical drugs have been described as CYP3A inducers through 

their capacity to bind and activate PXR [15]. Ten out of 21 compounds tested were found to 

partially but specifically activate hPXR in HG5LN-hPXR cells. Some of them such as 

tamoxifen [10], mevastatin [38] and carbamazepin [17] have previously been described as 

PXR ligands. Our data confirmed their activity and depicted their potency in our bioassay. 

Moreover, to our knowledge, the cholesterol-lowering drugs fenofibrate and bezafibrate and 

the benzodiazepines medazepam and clonazepam were here newly described as hPXR 

ligands. For fibrates, Prueksaritanont et al [39] reported a lack of hPXR transactivation by 

fenofibric acid, the metabolite of fenofibrate, in HepG2 cells transfected with a Gal-

PXR/luciferase system. To some extent, this partly contrasts with our results with fenofibrate, 

the parent compound however, which activated the hPXR at micromolar concentrations.  

Finally, diclofenac, a non-steroidal anti-inflammatory drugs (NSAID) usually found in the 

aquatic environment [40], was also active on hPXR, in agreement with a recent report [15]. 

Besides, it is noted that 11 of the tested drugs, including environmentally recurrent ones (e.g. 

caffeine), were not active in the assay, hence showing some limitation of the bioassay as a 

biodetector for pharmaceuticals. Overall, our data on hPXR activation by various classes of 
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pesticides and environmental pharmaceuticals confirm its potential use as a sensor for certain 

emerging aquatic contaminants.  

Previous studies pointed out the ability of nonplanar PCBs to bind and activate or inhibit PXR 

from different species [11,16,41]. Accordingly, we observed that nonplanar PCBs but not co-

planar PCBs were hPXR ligands, although some discrepancies with previous studies were 

noted. By using a transient Gal-hPXR reporter gene assay, Tabb et al. [16] described several 

highly chlorinated PCBs as very weak hPXR agonists and as potent hPXR antagonists, 

especially for congeners #153, 145, 184 and 197. In contrast, we found that nonplanar PCBs 

with more than five chlorine substituents (PCBs #101, 138, 153 and 180) were potent hPXR 

activators (Fig. 5), but they were unable to antagonize hPXR in HG5LN-hPXR cells after co-

exposure with 0.1 µM SR12813 (data not shown). Our results are however in agreement with 

other published studies reporting the agonistic effect of non planar PCBs on mouse (i.e. for 

PCB #47, 184, 188, 196, 200 [41]) and human PXR (i.e. for PCB #118, 153 [11]) in transient 

hPXR transactivation assays. For PCB118 however, we strongly suspected unspecific 

luciferase activation in both HG5LN-hPXR and HG5LN cells, hence we ranked this 

compound as a negative compound. Altogether, the ability of non co-planar PCBs to interfere 

with hPXR, here reinforced by our new results with PCB101, 138 and 180, stresses the view 

that such a PXR bioassay could serve as a biodetector for non dioxin-like PCBs in 

environmental bio-analysis. 

Among the other emerging EDCs tested, we notably report TPP as a relatively potent active 

chemical on HG5LN-hPXR cells, in accord with a previously published work [42]. TPP 

belongs to high-production-volume organophosphate esters (OPEs) widely used as flame 

retardant and plasticizers in several applications. OPEs are widespread water and air, 

sediment and soil contaminants [43]. Recently, TPP was shown to bioaccumulate in aquatic 
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organisms such as molluscs (mussels, oysters, clams) at concentration up to 378 ng/g dry wt 

[44] and environmental risk assessment for this substance is of current concern [45].  

Overall, the chemical screening carried out in the present study complemented previous 

studies performed with HG5LN-hPXR cells [12,14] in that it further characterized and 

extended to various structurally different contaminants the range of chemicals to be detected 

by this bioassay. In a bioanalytical perspective, establishment of dose-response curves for 

each individual compound allowed determining their relative potency as SR12813 equivalent 

factors (SREF) essential for mass balance calculation in the bioanalysis of environmental 

samples. This has been investigated in the second part of the study. 

HG5LN-hPXR cell line as a biosensor for the detection of emerging compounds in 

environmental matrices? 

To our knowledge, this is one of the first reports of the biological detection of PXR activating 

substances in surface water (POCIS) and effluent samples. Although we did not identify the 

nature of major chemicals responsible for the detected activities, mid-polar compounds in the 

dissolved water phase from both river and effluent samples could be suspected. In addition, 

the comparison of PXR activity with other receptor-mediated activities suggested that the 

PXR bioassay provided different information on chemical contamination, likely related to 

different detected compounds, and was thus complementary to the other assays within such a 

multi-tests battery (Tab. 6). 

By using the same in vitro model as in the present study, very recent studies reported the 

detection of PXR activities in wastewaters [46,47],  and river sediments from contaminated 

areas [48]. In these studies, instrumental analyses of target chemicals, including alkylphenols, 

steroid estrogens or organochlorinated pesticides, did not permit to identify the active 
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chemicals responsible for the PXR activity. Moreover, recent studies reported induction of 

Cyp3A expression by municipal effluents in cultured trout hepatocytes in vitro [49] or in 

zebrafish liver in vivo [50]. In the study of Lister et al., PXR mRNA expression in zebrafish 

was not affected after effluent exposure. In any case, the substances responsible for biological 

activities were not identified.  

Altogether, these results clearly show that chemical agents that can affect the PXR signaling 

pathway are present in the aquatic environment. Due to the important role of PXR in 

endocrine and xenobiotic metabolism regulation, identification of these agents is an important 

issue to be addressed. For such purpose, application of mass balance analysis (MBA) based 

on targeted chemical analyses coupled to in vitro bioassays has proven useful as a first 

characterization step of the chemicals responsible for biological effects, provided that 

significant information background on environmental levels of bioactive substance is 

available. For instance, by targeting steroid estrogens or PAHs, MBA approach has often 

succeeded in characterizing, at least partly, the chemicals responsible for “classical” activities 

such as ER or AhR activity, respectively [48,51,52]. For PXR activity however, such an a 

priori based investigation failed in identifying the main substances responsible for PXR 

activities in our study. Only BPA and 4tOP were shown to weakly contribute to overall PXR 

activity in wastewater effluent samples, while the other analyzed substances known to activate 

hPXR, including pharmaceuticals, planar PCBs or pesticides, were present at too low 

concentrations to significantly account for the measured biological activities.  

Several hypotheses can be advanced to explain the lack of concordance between biological 

and chemical analyses. The most probable cause is that we did not target the “good” 

chemicals by the chemical analyses. As a matter of fact, PXR can be activated by a wide 

diversity of known (and likely unknown) environmental compounds [53], and it is technically 
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impossible to perform exhaustive analyses. For instance, it is noted that some strong PXR 

activators like mevastatin, clotrimazole, pretilachlor or oxadiazon could not be measured in 

our samples. Moreover, the serious lack of data on the environmental occurrence of PXR 

active substances makes difficult a priori based investigation, as stated above. On the other 

hand, the mass balance approach we used assumes a concentration additive model, based on 

parallel dose-response curves and equal efficacy of chemical agonists [33]. It is noteworthy 

that some of the individual chemicals that we tested behave as partial PXR agonists (e.g. 

clotrimazole, mediazepam, oxadiazon, TPP) and it can be expected that other than additive 

interactions may occur when they are present in complex mixtures, hence impeding PXR 

activity prediction on the basis of individual potency of measured active compounds. 

Moreover, hPXR has a large and flexible ligand binding domain, allowing the binding of a 

wide range of structurally different ligands with molecular weights ranging from less than 250 

kDa to more than 800 kDa [19,54]. Thus, its smooth binding pocket could host several ligands 

at the same time, which might result in synergic response. However, to our knowledge, 

interactive effects of chemical mixtures on PXR activation has not been reported so far, and 

would thus be an important issue to be addressed within the context of the present study. 

Overall, this study should be considered as an exploratory study and further research will be 

necessary to identify PXR active chemicals in environmental samples. This will go through 

the implementation of effect-directed analyses coupled to dedicated sample fractionation 

protocols [55]. Also, the development of nuclear receptor-affinity columns [56], based on 

recombinant hPXR, represents a promising way to isolate and purify hPXR ligands from 

complex mixtures. These approaches are under evaluation in our laboratories and are expected 

to provide new information on the chemical nature of active PXR ligands present in the 

environment. 
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CONCLUSION 

In this work, we report the successful use of the stable HG5LN-hPXR reporter gene assay to 

detect hPXR activation by a panel of emerging compounds and by surface and waste water 

samples, albeit the main compounds that contributed to the detected activities remain to be 

identified. Combined to other in vitro bioassays for EDCs and AhR activating chemicals, the 

hPXR assay provided complementary information on bioactive contaminants and thereby 

enhanced the environmental diagnostic. As PXR plays a crucial role in xenobiotic 

detoxification and hormone metabolism, alteration of PXR signaling pathway may lead to 

biological effects in exposed organisms, as recently reported in fish [50]. However, marked 

cross-species differences have been reported for PXR transactivation by xenobiotics [57]. 

Thus, for a proper risk assessment to aquatic organisms, the use of a dedicated fish PXR 

bioassay to characterize potential hazard to fish population may also be considered. 
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Figure captions 

Fig. 1 Schematic presentation of the preparation of effluent extracts and in vitro testing using 

bioassays.  

Fig. 2 (a) Dose-response curves of reference compounds in HG5LN-hPXR cells. Results are 

expressed as percentage of maximal luciferase activity induced by SR12813 at 3 µM. (b) 

Specificity test for luciferase induction in HG5LN cells. Results are expressed as percentage 

of luciferase activity measured in DMSO treated cells (solvent control). Values are means of 

triplicates ± SD and are representative of at least three independent experiments 

Fig. 3 (a) Dose-response curves of several pesticides in HG5LN-hPXR cells. Results are 

expressed as percentage of maximal luciferase activity induced by SR12813 at 3 µM. (b) 

Specificity test of luciferase induction by pesticides in HG5LN cells. Results are expressed as 

percentage activity measured in the presence of DMSO (solvent control). *: Significantly 

different from solvent control in HG5LN cells (p<0.05). In HG5LN-hPXR cells, all values are 

significantly different from control (p<0.05). Values are means of triplicates ± SD and are 

representative of at least three independent experiments 

Fig. 4 (a) Dose-response curves of pharmaceuticals compounds in HG5LN-hPXR cells. 

Results are expressed as percentage of maximal luciferase activity induced by SR12813 at 3 

µM. (b) Specificity test of luciferase activity induction by pharmaceuticals in HG5LN cells. 

Results are expressed as percentage activity measured in the presence of DMSO (solvent 

control). *: Significantly different from solvent control (p<0.05). In HG5LN-hPXR cells, all 

values are significantly different from control (p<0.05). Values are means of triplicates ± SD 

and are representative of at least three independent experiments 
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Fig. 5 (a) Dose-response curves of TPP and non co-planar PCBs in HG5LN-hPXR cells. 

Results are expressed as percentage of maximal luciferase activity induced by SR12813 at 3 

µM. (b) Specificity test of luciferase activity induction by TPP and non co-planar PCBs in 

HG5LN cells. Results are expressed as percentage activity measured in the presence of 

DMSO (solvent control). *: Significantly different from solvent control (p<0.05). In HG5LN-

hPXR cells, all values are significantly different from control (p<0.05). Values are means of 

triplicates ± SD and are representative of at least three independent experiments 

Fig. 6 (a) Dose-response of POCIS extracts in HG5LN-hPXR cells. Results are expressed as 

percentage of maximal luciferase activity induced by SR12813 at 3 µM. (b) Specificity test of 

luciferase activity induction by POCIS extracts in HG5LN cells. Results are expressed as 

percentage activity measured in the presence of DMSO (solvent control). *: Significantly 

different from solvent control (p<0.05). In HG5LN-hPXR cells, all values are significantly 

different from control (p<0.05). Values are means of triplicates ± SD and are representative of 

at least three independent experiments 

Fig. 7 (a) Dose-response curves by organic extracts of crude (-c) or filtered (-f) effluents A, B 

and C in HG5LN-hPXR cells. Results are expressed as percentage of maximal luciferase 

activity induced by SR12813 at 3 µM. (b) Specificity test of luciferase activity induction by 

effluents extracts in HG5LN cells. Results are expressed as percentage activity measured in 

the presence of DMSO (solvent control). Values are means of triplicates ± SD and are 

representative of at least three independent experiments 
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Table 1. Summary of hPXR activation by pesticides in HG5LN-hPXR cells.  

 
Compound EC50 (mol/l) 

Maximal luciferase 

induction 
a
 

Concentration at max. 

induction (µM) 

Active Oxadiazon 
b
 5.31 E-07  68 ± 2 3  

compounds Pretilachlore 
b
 1.32 E-07  94 ± 8 3  

 
o,p'-DDT 

b
 3.96 E-06  143 ± 19 10  

 
Linuron 

b
 3.68 E-05  32 ± 3 10  

 
Lindane 5.45 E-06  71 ± 4 10 

 
Endosulfan 3.84 E-06  73 ± 3 10  

 
Triclosan 8.0 E-06  32 ± 2 3  

 
Prometryn 1.44 E-05  51 ± 2 10  

 
Terbutryn 1.78 E-05 48 ± 2 10  

 
Terbutylazine 3.34 E-05  32 ± 1 10  

No active Tributyltin, chlorotoluron, metoxuron, chlorosulfuron, nicosulfuron and 

compounds hexachlorobenzene  

 

a, maximal luciferase induction is expressed as a percentage of maximal luciferase activity 

induced by SR12813 at 3 µM (mean value of triplicates ± SD); b, compounds already tested 

by Lemaire et al. (2004, 2006). 
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Table 2. Summary of hPXR activation by pharmaceuticals in HG5LN-hPXR cells 

 
Compounds EC50 (mol/l) 

maximal luciferase 

induction 
a
  

Concentration at max. 

induction (µM) 

Active Rifampicin
b
 3.80 E-07 87 ± 6 3  

compounds Clotrimazole
b
 4.71 E-07  54 ± 2 3  

 
T0901317

b
 5.24 E-09  83 ± 2 0.1  

 
EE2

b
 3.01 E-06  37 ± 2 10  

 
SR 12813

b
 6.90 E-08  100 ± 5 3  

 
Fenofibrate 1.21 E-06  61 ± 8 3  

 
Tamoxifen 1.26 E-06  39 ± 6 10  

 
Mevastatin 2.39 E -06 80  ± 1 30  

 
Medazepam 4.22 E-06  50  ± 4 10  

 
Diazepam 8.15 E-05  39 ± 3 30  

 
Clonazepam 1.11 E-04  27 ± 1 10  

 
Diclofenac 1.23 E-04  48 ± 1 100 

 
Bezafibrate 2.02 E-04  39 ± 4 100  

 
Carbamazepin 2.72 E-04  40 ± 1 100  

 
Ketoprofene 3.49E-04  30 ± 3 100  

 
Triazolam 3.77E-04  36 ± 1 30  

Inactive loprazolam, bromazepam, alprazolam, naproxen, ibuprofen, aspirin, caffein, 

compounds flumazemil, pravastatin and sulfamethoxazole 
  

 

a, maximal luciferase induction is expressed as a percentage of maximal luciferase activity 

induced by SR12813 at 3 µM (mean value of triplicates ± SD); b, compounds already tested 

by Lemaire et al. (2004, 2006) and/or Mnif et al., 2007. 
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Table 3. Summary of hPXR activation by POPs, plasticisers and other compound tested on 

HG5LN-hPXR cells 

 
Compound EC50 (mol/l) 

Maximal luciferase 

induction 
a
  

Concentration at max. 

induction (µM) 

Active PCB 180 1.50 E-05  82 ± 6 30  

compounds PCB 138 1.51 E -05 112 ± 4 30  

 
PCB 153 1.53 E-05  85 ± 11 30  

 
PCB 101 2.06 E-05  74 ± 5 30  

 
PCB 118 2.83 E-05  38 ± 2 30  

 
BPA

b
 2.71  E-05  37 ± 2 10  

 
TPP 1.36 E-06  62 ± 2 10  

Inactive PCB 28, 52, 77, 126, 169, benzo[k]fluoranthene, 3OH-benzo[a]pyrene, 

compounds fluoranthene, naphtalene and TCDD 
  

 
BHT, DHT, n-butyl paraben, n-benzyl paraben, n-pentyl paraben 

 

a, maximal luciferase induction is expressed as a percentage of maximal luciferase activity 

induced by SR12813 at 3 µM (mean value of triplicates ± SD). b, compound already tested by 

Mnif et al., 2007. 
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Table 4. Chemical analyses and SR12813-EQ determination in POCIS extracts  

Detected 

compounds 

SREF
a
 Concentration (ng/POCIS) 

 
F1 F2 F3 

Pharmaceuticals Carbamazepin 6.0E-04 1.6  0.1 n.d. 

 
Diclofenac 5.4E-04 0.5 3.7 n.d. 

Pesticides Terbuthylazine 4.1E-03 2 n.d.
b
 n.d. 

 
Promethryn 1.0E-02 2 n.d. n.d. 

 
Terbutryn 1.0E-02 1 n.d. n.d. 

 
Lindane 2.7E-02 2 n.d. n.d. 

 
Isoproturon 1.9E-02 6 n.d. n.d. 

 
Linuron 3.1E-03 12 n.d. n.d. 

 
Diuron 1.9E-03 23 n.d. n.d. 

 
o,p’-DDT 1.7E-02 1 n.d. n.d. 

Alkylphenols 4tOP 5.8E-02 10 <1 <1 

 
4NP 3.0E-02 20 <3 <3 

 
BPA 5.8E-03 6 <1 <1 

Hormones E2 3.0E-03 n.d. n.d. 2 

Σ Chem-SR-EQ
c 
 (µg/POCIS) 

 
1.5E-03 1.4E-04 1.1E-04 

Bio-SR-EQ
d
  (µg/POCIS) 

 
3.59 1.01 n.d. 

Chem-SR-EQ / 

Bio-SR-EQ 
(%) 

 
0.037 0.013 - 

 

a
, SREF: SR12813 equivalence factor relative to SR12813, determined as described in the 

Materials and Methods section. 
b
 n.d.: not detected, 

c 
Chem-SR-EQs: chemical SR12813 

equivalents based on chemical analyses, 
d 

Bio-SR-EQs: biological SR 12813 equivalents 

based on EC20 effective sample concentration in the HG5LN-hPXR bioassay. 
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Table 5. Chemical analyses and SR12813-EQ determination in effluent extracts 

Detected compounds SREF
a
 

Concentration (ng/L) 

Site A Site B Site C 

   
 Crude Filtered Crude  Filtered  Crude Filtered 

Pharmaceuticals Carbamazepin 6.8E-04 -
b
 6 - 559 - 248 

 
Diazepam 1.9E-03 - n.d.

c
 - 11 - n.d. 

 
Ketoprofen 4.0E-04 - n.d. - 950 - 303 

 
Diclofenac 5.4E-04 - 27 - 310 - 245 

Hormones E1 4.1E-03 - 83 - 8 - 58 

 
EE2 4.8E-03 - n.d. - 10 - n.d. 

Pesticides Diuron 1.9E-03 - 70 - 430 - 349 

 
Linuron 3.1E-03 - 5 - 294 - 126 

 
Isoproturon 1.8E-03 - 12 - 0.4 - 9 

 
Lindane 2.2E-02 4.5 4 7.3 7 20.5 19 

 
o,p’-DDT 1.8E-02 0.3 n.d. 0.3 0.1 0.3 n.d. 

PCBs PCB 101 3.4E-03 10.8 5.3 3.3 2.3 16 9 

 
PCB 138 5.3E-03 3.2 n.d. 0.7 n.d. 7.5 4 

 
PCB 153 6.0E-03 14 10.2 3.1 2.4 19.4 15 

 
PCB 180 6.1E-03 0.8 n.d. 0.1 n.d. 0.7 n.d. 

Alkylphenols BPA 5.8E-03 6474 5100 232 230 13809 13600 

 
4tOP 6.1E-02 n.d. n.d. 124 124 9 n.d. 

Σ Chem-SR-EQ
d
 (µg/L) 

 
0.038 0.030 0.009 0.012 0.081 0.081 

Bio-SR-EQ
e
 (µg/L) 

 
23.0 22.8 0.76 0.85 9.45 10.7 

Chem-SR-EQ / 

Bio-SR-EQ 
(%) 

 
0.16 0.13 1.20 1.39 0.86 0.76 

 

a: SREF: SR12813 equivalence factor relative to SR 12813, determined as described in the Materials 

and Methods section. 
b
 - : only analysed in dissolved phase due to hydrophilic properties; c: n.d.: not 

detected or below quantification limits, d: Chem-SR-EQs: chemical SR12813 equivalents, e:
 
Bio-SR-

EQs: biological SR12813 equivalents based on EC20 effective sample concentration in the HG5LN-

hPXR bioassay. 
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Table 6. Estrogenic, (anti)androgenic, PAH-like and dioxin-like activities in POCIS and 

effluent extracts. 

  

Measured activities 

  

Estrogenic Androgenic Anti-androgenic PAH-like Dioxin-like 

POCIS 

extracts 

 

E2-EQ 

(ng/POCIS) 

DHT-EQ 

(ng/POCIS) 

FLU-EQ 

(µg/POCIS) 

BaP-EQ 

(µg/POCIS) 

TCDD-EQ 

(ng/POCIS) 

Procedural blank n.d. n.d. n.d. n.d. n.d. 

F1 0.44 n.d. n.d. 47.5 n.d 

F2 0.06 n.d. n.d. 15.8 n.d. 

F3 n.d. n.d. n.d. n.d. n.d. 

LD 0.02 0.2 0.5 1.1 0.6 

Effluent extracts 
E2-EQ 

(ng/L) 

DHT-EQ 

(ng/L) 

FLU-EQ 

(µg/L) 

BaP-EQ 

(µg/L) 

TCDD-EQ 

(ng/L) 

Procedural blank  n.d. n.d. n.d. n.d n.d. 

A crude 2.2 n.d. n.d. 0.320 n.d. 

 

filtered 2.0 n.d. n.d. 0.107 n.d. 

B crude 1.9 n.d. n.d. 0.453 n.d. 

 

filtered 3.2 n.d. n.d. 0.231 n.d. 

C crude 5.8 8.1 n.d. 0.608 n.d. 

 

filtered 8.2 14.1 n.d. 0.245 n.d. 

LD 0.09 0.98 0.45 0.004 2.7 

LD: limit of detection 
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Wastewater Effluent

(250 mL)

Raw effluent

GF/F filtration

Dissolved phase

Organic extract of 

crude effluent

(0.2 mL methanol)

Organic extract of 

filtered effluent

(0.2 mL methanol) 

MilliQ water

(250 mL)

Procedural blank

(0.2 mL methanol) 

Testing for hPXR, ER, (anti)AR and AhR-mediated activities 

using in vitro bioassays

- Liq/liq extraction by 3 50 mL CH2Cl2
- Drying and concentration

Fig. 1
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