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ABSTRACT 
An extensive scientific programme has been carried out by Andra (French Agency in charge of radioactive waste 
management) for investigating feasibility of High Level Activity Waste disposal in deep geological formation. An 
Underground Research Laboratory (URL) is currently being constructed in North-eastern France to assess the 
adequacy of a hard-clay argillite layer (Callovo-Oxfordian formation) situated between 420 m and 550 m of depth. 
Geotechnical measurements have been carried out during the shafts and drifts excavation and particularly upon the 
main level of the laboratory (-490 m). The drifts are “horseshoe section” type with about 17 m² in area mainly supported 
by metallic ribs and rock bolts. The digging has been performed with classical pneumatic hammer. Measurement 
sections have been instrumented very close to the front face using convergencemeters and radial extensometers. This 
paper presents a comparison between in situ measurements and numerical modelling. Elastic calculations are not in 
agreement with the measured deformations. An elastoplastic constitutive model considering damage and using Hoek & 
Brown criteria has been developed and implemented in the FLAC3D numerical code. Mechanical parameters came from 
lab tests performed on core samples. For the first meters, model provides consistent displacements. Beyond 4 meters, 
a time dependent convergence takes place and has to be integrated in the model to take into account creep and/or 
hydromechanical behaviour. 
 
RÉSUMÉ 
Un important programme scientifique a été conduit par l’Andra (l’agence française de la gestion des déchets radioactifs) 
afin d’étudier la faisabilité d’un stockage de déchets de haute activité et à vie longue dans une formation géologique 
profonde. Un laboratoire de recherche souterrain est actuellement en cours de construction dans le Nord-Est de la 
France pour évaluer les propriétés d’une roche indurée argileuse (argillite du callovo-oxfordien). Cette roche se situe 
entre 420 m et 550 m de profondeur. Des expérimentations géomécaniques ont été mises en oeuvre lors de la 
construction des puits et des galeries en particulier au niveau principal (-490 m). Une méthode classique de creusement 
au marteau piqueur a été utilisée pour excaver les galeries de type ‘section fer à cheval’ d’une surface de 17 m2 environ 
avec un soutènement se composant de cintres métalliques et de boulons aciers. Des sections de mesures ont été 
équipées au plus tôt près du front avec des plots de convergence et des extensomètres radiaux. Dans cet article, une 
comparaison entre modèles mécaniques et mesures in situ est présentée. Les résultats d’une approche purement 
élastique ne sont pas en accord avec les déformations observées. Une loi rhéologique élastoplastique utilisant les 
critères Hoek & Brown a été développée et implémentée dans le code numérique FLAC3D. Les paramètres du modèle 
ont été ajustés sur des essais sur échantillons. Le modèle prédit bien les déplacements mesurés lors des 4 premiers 
mètres d’excavation. Après, la convergence est dominée par les effets différés, nécessitant l’intégration d’une loi de 
fluage ou d’un comportement hydromécanique dans le modèle. 
. 
1. INTRODUCTION 
 
In November 1999, having completed the preliminary 
work phase, Andra started construction work of an 
underground research laboratory (figure 1) in the district 
of Bure (Meuse département), located in the North-
eastern of France. From 2000 to 2005, the construction of 
the experimental site has allowed to study radioactive 
waste storage possibilities in deep geological formation 
(Delay, 2003 ;Andra, 2005a). 
 
The target horizon for the laboratory is a 130 m thick layer 
of argillaceous rocks that lies between about 420 and 550 
meters below the surface at the URL site. From a 
lithological view point, the depositional period straddles 

the Callovian and Oxfordian subdivisions of the middle to 
upper Jurassic. Argillaceous rocks contain a mixture of 
clay minerals and clay-sized fractions of other 
compositions. The clays, which constitute 40 % - 45 % on 
average of the Callovo-Oxfordian argillaceous rocks, offer 
groundwater isolation and radionuclides retention. Silica 
and carbonate-rich sedimentary components strengthen 
the rock to contribute to stability of the underground 
construction. 
 
The stratigraphy of the URL is one of alternating 
limestone-rich and clay-rich units. On the upper part, the 
Oxfordian limestones lie from about 150 to 400 meters 
depth. Between the surface and the Oxfordian limestones 
is a 150 m thick sequence of mixed argillaceous rocks, 
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Figure 1. Localization of the underground research 
laboratory at the Meuse/Haute-Marne site 
 
marls, and limestones of the Kimmeridgian. Underlying 
the Callovo-Oxfordian argillaceous rocks are the 
Bathonian and Bajocian-age Dogger limestones and 
dolomitic limestones (Vigneron et al., 2004). 
 
The state of in situ stress at the Meuse/Haute-Marne site 
has been measured by comprehensive combined 
methods. The vertical stress profile is presently well 
known on the site. The orientation of the σH stress 
(N155°E) is consistent with the regional stress field. The 
horizontal stress anisotropy is estimated between 1.1 < 
KH = σH/σh < 1.3 and the vertical stress and minimum 
horizontal stress have been directly measured close to 
the main level (-500 m depth) respectively equal to 12.7 
MPa and 12.4 MPa (Wileveau, 2005). 
 
The main purpose of the geomechanical in situ 
investigation is to understand the rock response to the 
excavation of underground engineered structures and to 
the development of the damaged zone. The damaged 
zone characterization during shafts and drifts excavations 
will not be developed in this paper. Mechanical 
measurements are grouped in drift sections and within 
specific shaft excavation monitoring experiments so-
called “mine by tests”. These geomechanical experiments 
include a set of boreholes or convergence sections 
designed to monitor the behaviour of rock when openings 
are restarted. 
 
Figure 2 presents the overall layout of the underground 
network of excavated rock in the Meuse/Haute Marne 
laboratory and the location of the experimental drifts 
constructed in the clay formation. The first geomechanical 
mine by experiment is located in the -445 m experimental 
drift, corresponding to the upper layer of the Callovo-
Oxfordian layer, where the mechanical response is mainly 
elastic (Wileveau et al., 2005). After an important 
instrumentation carried out from the – 445 m level, the 
vertical mine by test has been monitored between -465 m 
and -480 m during the main shaft sinking (Armand et al., 
2006). The third geomechanical experiment, dealing with 
this paper, is the drift excavation tests at the main level of 
the URL, which is around -490 m beneath the surface. 
SMR1.1 and SMR1.3 sections have been respectively 
installed in april 2005 and august 2005 during the works 

Experimental drift Experimental drift

Technical drifts

Main shaftMain shaft

Auxiliary shaftAuxiliary shaft

Technical drift

445 m

490 m

490 m

SMR1.1

SMR1.3

 
 
Figure 2. General layout drawing of the Meuse/Haute-
Marne URL showing SMR1.1 and SMR1.3 locations 
 
of drift excavation conducted in the direction of the 
maximal and minimal horizontal stresses. 
 
2. EXPERIMENTAL RESULTS 
 
The two instrumented sections have been put in place 
very close to the front face (around 1.5 meter) in order to 
investigate the maximal deconfinement from drift 
excavation. The sections are composed of radial 
extensometers for which the end point is fixed at 20 m far 
from the wall, and convergence measurements with 6 
points on the section (see figure 3). 
 
One notice that the feature of the drifts is “horseshoe 
section” with about 17 m2 in area mainly supported by 
metallic sliding arches composed of three parts and rock 
bolts of 2.4 m length. The floor is also covered by a 
concrete slab of 0.7 m of thickness. Classical pneumatic 
hammer has been used to dig the galleries. 
 
The convergences have been measured manually using 
a system of invar wire along 9 directions of bases. The 
accuracy of this method is +/- 0.2 mm. The reading 
frequency has been adapted to the excavation advance 
rate in order to obtain a high density of measurements 
within a distance of 12 meters from the section, 
corresponding approximately to 3 times the excavation 
diameter. The convergence measurements are given on 
figure 4 for the two sections SMR1.1 and SMR1.3 until 
early October 2005. The convergence is still monitored. It 
is not presented in this paper. 
 
Obviously, the behaviour of these two perpendicular 
sections is very different and strongly linked with the in 
situ stress anisotropy. The evolution of convergence in 
the SMR1.3 is very similar in the vertical and horizontal 
direction (respectively, measured on bases 6-3 and 1-5) 
(Fig. 4b). On the SMR1.1 section (Fig. 4a), the vertical 
convergence is much higher than the horizontal one what 
is in good agreement with the stress concentration due to 
the maximum horizontal stress σH acting on the walls. 
These values are given below (the convergence is reset 
to zero just before the excavation starting). 
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Figure 3. Example of instrumented section SMR1.1 with 
combined extensometer and convergence measurement  
at the same location. Base “n” indicates the reference 
number of convergence point. 
 
The extensometers, on the same section than the 
convergence measurements, have monitored the 
deformations of the rock mass automatically (frequency : 
4 data/hour) during the excavation advance of the drifts. 
Figure 5 shows the measurements for the cases of 
vertical downward and horizontal extensometers. Several 
names are used (e.g. GMR, GLE, GKE, GNI) for the drifts 
dug in the experimental area. PM indicates the distance 
between the workface and the axis of the previous 
gallery. Only 4 curves by extensometer are presented (0 
m, 2 m, 5 m, 10 m relatively to the anchor installed at 20 
m which is considered as a fixed point. 
 
One observes the deformation rate reacts gradually with 
the progress of the face. Moreover, in the particular case 
of SMR1.3 section where the history of excavation is 
more complex, the effect of the others openings is clearly 
measured. Such interaction between drifts is mainly due 
to the general layout of the URL designed to have a rapid 
access to the facilities for the time schedule constraint. 
The smallest distance between parallel galleries is equal 
to 4 times the diameter of the gallery between the GLE 
and GKE drifts. This effect has not been identified on the 
SMR1.1 section. 
 
 

a)  

b)  
Figure 4. Convergence measurements on sections 
SMR1.1 (a) and SMR1.3 (b) 
 
The magnitude of extension at the wall relatively to the 
reference point taken at the 20 m anchor is comparable 
to the convergence measurements, even if the starting 
date of measurement are differed of few days. The table 
1 shows the value for both instrumentations. 
 
The values obtained by convergence and extension make 
up a consistent set of data, even though the deformations 
obtained by the convergence method give in most of the 
case a larger deconfinement. This difference can be 
explained by the delay to install the extensometer 
compared to the convergence section or also by the non 
measurable part of deformation in place up to 20 m from 
the wall of the openings. In the following chapter, one 
takes the convergence values to compare the results 
obtained by modelling.  
 
3. INTERPRETATION OF CONVERGENCES 

 

3.1 Results of elastic model 
 
The first analysis has been made using a classical 
approach in the framework of linear elasticity assuming a 
plane strain approach developed by Panet & Guellec 
(1974). More complex calculations including a 3D 
simulation of the drift excavation is presented in the next 
chapter. 
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Figure 5. Extension of the rock mass versus time around 
the drift during the drifts progress – 5a) and 5b) SMR1.1 
section – 5c) and 5d) SMR1.3 section – the values are 
calculated considering the fixed point at 20 m. 
 

 
Table 1. Comparison between convergence and 
extension measurements (SMR1.1 and SMR1.3). 
 

 Ref. 
number 

Drift 
axis 

Period1 
(days) type Value2 

(mm) 
base 1-5 

horiz. 35.8 
SUG1350 σH 163 

base 6-3 
vertical 39.7 

base 1-5 
horiz. 42.7 

SUG1360 σH 163 
base 6-3 
vertical 39.8 

SUG1301 σH 163 horiz. 
extens. 33.8 

S
M

R
1.

3 

SUG1303 σH 163 vertical 
extens. 27.0 

base 1-5 
horiz. 8.6 

SUG1150 σh 45 
base 6-3 
vertical 33.2 

base 1-5 
horiz. 8.9 

SUG1160 σh 45 
base 6-3 
vertical 53.0 

SUG1103 σh 45 horiz. 
extens. 5.7 

SUG1105 σh 45 vertical 
extens. 37.2 

S
M

R
1.

1 

SUG1118 σh 45 vertical 
extens. 23.6 

1 Period of observation calculated until the 1st October 
2005 
2 The values given are the half-convergence measured 
between two bases 
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Figure 6. Comparison between the results of 
convergence measurements of SMR1.3 and plane strain 
modelling 
 
Considering isotropic mechanical behaviour of the 
argillite, the elastic parameters Young modulus (E = 4.0 
GPa) and Poisson’s ratio (ν = 0.3) are taken from the 
Andra’s labtests on samples coming from deep boreholes 
drilled on the Meuse/Haute-Marne site (Andra, 2005b).  
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The results are not in agreement with the observations as 
it is shown in figure 6 for the case of SMR1.3 where the in 
situ stresses are nearly isotropic around the gallery. A 
better agreement is obtained while reducing Young 
modulus up to one order of magnitude. This assumption 
is inconsistent with the mechanical behaviour observed 
usually on samples subjected to lab tests and can not be 
validated. Moreover, the significant elastic deconfinement 
in the first meters from section predicted by plane strain 
model is not reproduced. 
 
To better represent the complex behaviour of the argillite, 
one also needs to consider a damageable rock. The 
fracture network has clearly detected within the first 2 
meters from the gallery wall by several direct methods 
(geological survey on cores samples, resin injection 
within the fracture network followed by overcoring, 
borehole camera) and indirect methods (velocity 
measurement, tomography). The application of elastic 
model, combined with in situ observations, leads us to 
consider (as it was previously forecasted) an elastoplastic 
approach for the argillite lying at this depth. 
 
3.2 Results of elastoplastic model 
 
Numerical calculations were carried out in 3D to simulate 
the drift progress (in 5 phases) of a horseshoe gallery at 
490 m of depth (figures 3 and 7) according to the two 
orientations of the galleries with respect to the stress 
tensor : σh and σΗ. A first phase allows to reach the fine 
grid zone. Then, 3 phases of drift advancing (1 meter by 1 
meter) are simulated. Finally, the drift advancing is 
continued to have a complete deconfinement until the 
end meshed zone. 
 
The geometrical model extends on 49.4 m in X direction, 
25.3 m in the direction Y and on 50.6 m height (Z 
direction). It consists of 627183 gridpoints and 605784 
zones. The used mesh is sufficiently fine for highlighting 
the characteristics of the zones exceeding the damage or 
failure criteria. In the same way, nodal points were 
selected in various directions (in front of the face, at the 
walls side, in vault and under floor) to follow the evolution 
of displacements (figure 8) and stresses during the 
phases of drift advancing. These points also allowed easy 
confrontation with in situ measurements on the two 
sections SMR1.1 and SMR1.3. 
 
3.2.1 Modelling assumptions 
 
The commercial computation software used for this study 
is delivered by Itasca (2002): FLAC3D 2.1 v251.  
 
The boundary conditions are as follows: 

• null normal displacements are prescribed on the 
lower face of the model (Z = -515.3), on the face 
corresponding to the gallery symmetry plane (Y 
= 0) and on the “left” face of the model (X = -
23.0); 

• stress conditions are prescribed on the upper 
face of the model (Z = -464.7), on the “back” 
face of the model (Y = 25.3) and on the right 
face of the model (X = 26.4). 

 
 
 

 
 
 

Figure 7. Mesh of the model including horseshoe shape 
and refined mesh around the drift (see zoom) 
 
The state of natural stresses (at -490 m depth) is as 
follows: σv = 12.7 MPa, σh = 12.4 MPa and  
σH = 1.3 xσh. From the assumptions on natural stress 
field, the worst case has been considered (KH = 1.3). 
 
3.2.2 Geomechanical properties 
 
Numerical calculations are carried out with a damageable 
elastoplastic model with hardening (as developed by 
Hoek and Brown). Table 2 indicates the parameters of 
this model used as reference parameters for studied zone 
(named B&C zones) of argillite (Andra, 2005b). 
 
Figure 8 illustrates the isovalues of total displacement 
obtained by the numerical calculation at the end of the 3 
steps of one meter excavation. The higher extrusion on 
the workface is clearly represented, as well as the corner 
effect. In order to compare the SMR1.1 and SMR1.3 
sections to the modelling results, we have put the tracked 
point at one meter before the initial face. The zero 
displacement is then considered when initial face is 
reached.  
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Table 2. Reference values of B & C zones (used in the 
modelling (S and m: parameters of the Hoek & Brown 
criterion, α and β: parameters characterising the residual 
strength evolution) 
 

Elastic parameters 
Young’s modulus (MPa) 4000 

Poisson's ratio 0.3 
Criteria of the Hoek & Brown model 

Failure criterion 

S (rup) 0.128 

m (rup) 2 

σc (rup) in MPa 33.5 

Damage initiation 

S (dam) 1 

m (dam) 1.5 
σc (dam) in MPa 9.6 

Residual strength 
α 2.8 

β in MPa 3 
 
 

 

 

σ
H

 

2 m advance 

initial face 

1 m advance 

 
Figure 8. Variation of total displacement for a 3 m 
advance 
 
3.2.3 Comparison between convergence 

measurements SMR 1.1 and SMR 1.3 and 
modelling 

 

Figure 9 illustrates the comparison between the results of 
numerical modelling and the convergence measurements 
at sections SUG1350, SUG1360 and SUG1170 (whose 
axis is parallel to σH) and sections SUG1150, SUG1160 
and SUG1180 (whose axis is parallel to σh) according to 
the face advance. 
 
The calculation results corresponding to 3 m of 
excavation with respect to the initial face show a value of 
vertical convergence of about 10 mm in the direction of 
the major stress and of 25 mm in minor stress direction, 
that is to say a ratio of 2.5 between these two directions.  
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Figure 9. Measurements comparison between horizontal 
and vertical convergences and modelling results 
 
We notice that this tendency is also observed for the 
measurements, even if the ratio of displacements is not 
exactly the same. 
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The differences between the displacements calculated in 
the four configurations depicted on Figure 9 show a 
relative good agreement of modelling with the 
measurements on the 4 first meters of face progress. 
 
In spite of the fact that the results of displacement 
calculation are rather well correlated with the 
measurements  in the case of drift advancing for a gallery 
oriented according to σH, the model predicts 
displacements higher than the measured values for the 
other direction (σh). This is natural, since the model does 
not integrate neither creep, nor hydraulic coupling. 
Therefore, long-term convergences cannot be reproduced 
by the model. 
 

4. CONCLUSION  
 
The main purpose of this paper is to assess the classical 
approach of tools used in geomechanics to interpret the 
in situ displacements measured on experimental mine by 
test conducted by Andra in the Meuse/Haute-Marne URL. 
For such hard clay lying at 490 m of depth in the Callovo-
Oxfordian formation, a complex behaviour is observed, 
including different phenomena as elastoplastic behaviour, 
time dependent effect, and hydro-mechanical coupling. 
 
On one hand, the elastic approach has not successfully 
provided reasonable comparison when the global elastic 
mechanical response of the clay has been confirmed at 
the 445 m of depth (Wileveau et al., 2005). On the other 
hand, a damageable elastoplastic constitutive model 
using Hoek & Brown criteria has been used. Main 
conclusion of this analysis is that for the first meters only, 
displacements observed are consistent with the 
elastoplastic model. After, the time dependent 
mechanisms take effect as a predominant part of 
deformations.  
 
One notices that the elastoplastic modelling presented 
here has been carried out in the framework of studies on 
3D complexity of URL (real geometry of drifts, anisotropy 
of horizontal stress, and working phases). Thus, we 
voluntarily simplified the argillite behaviour by neglecting 
the effects related on creep and hydraulic couplings. 
Some other numerical modelling are in progress to better 
understand the strong hydro-mechanical coupling 
observed in this clay, the real geometry and possible 
interaction between drifts, the role and link between 
plasticity and creep. 
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