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Abstract

Pharmaceuticals are found in the aquatic environment but their potential effects on non-target

species like fish remain unknown. This in vitro study is a first approach in the toxicity

assessment of human drugs on fish. Nine pharmaceuticals were tested on two fish hepatocyte

models: primary cultures of rainbow trout hepatocytes (PRTH) and on PLHC-1 fish cell line.

Cell viability, interaction with cytochrome P450 1A (CYP1A) enzyme and oxidative stress

were assessed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasodium bromide

tetrazolium (MTT), 7-ethoxyresorufin-o-deethylase (EROD) and dichlorofluorescein (DCFH-

DA) assays respectively. The tested drugs were clofibrate (CF), fenofibrate (FF),

carbamazepine (CBZ), fluoxetine (FX), diclofenac (DiCF), propranolol (POH),

sulfamethoxazole (SFX), amoxicillin (AMX) and gadolinium chloride (GdCl3). All

substances were cytotoxic, except AMX at concentration up to 500 µM. The calculated MTT

EC50 values ranged from 2 µM (CF) to 651 µM (CBZ) in PLHC-1, and from 53 µM (FF) to

962 µM (GdCl3) in PRTH. CF, FF, and FX were the most cytotoxic drugs and induced

oxidative stress before being cytotoxic. In PLHC-1 cells none of the tested drugs induced the

EROD activity whereas on PRTH, POH appeared as a weak EROD inducer. Moreover, in

PRTH, SFX, DiCF, CBZ and to a lesser extend, FF and CF inhibited the basal EROD activity

at clearly sublethal concentrations which may be of concern at the biological and at the

chemical level in a multipollution context. Finally, even if effective concentrations remained

much higher than the environmental ones described in the literature, further in vivo

investigations under chronic exposures are required before concluding on the potential

toxicity of human pharmaceuticals to fish.
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1 Introduction

Pharmaceuticals are biologically active compounds widely used in human and

veterinary medicine, agriculture and aquaculture. Parent compounds and metabolites have

been reported to occur in surface, drinking and ground water as they reach the environment

not only via hospital and domestic sewage treatment plant’s effluents but also through landfill

leachates and manufacturing residues. There is some evidence that many of these substances

of pharmaceutical origin are not degraded by sewage treatment plants (STP) and are also not

biodegradable in the environment (Andreozzi et al., 2002; Daughton and Ternes, 1999;

Ternes, 1998).

Such observations have led scientists to consider the risk on aquatic biota. But to date,

although therapeutic action, pharmacodynamic properties and side effects of drugs are well

defined in mammals, their effects on non target species (Halling-Sorensen et al., 1998),

particularly, their potential toxic effects on fish cells remain unknown. In this line, it has been

pointed out that, pharmacodynamic effects classified as secondary and considered irrelevant

for the therapeutic activity in human, might potentially play a major role in non-mammalian

organisms. Moreover, the human primary pharmacodynamic activities of drugs could induce

effects totally different from the therapeutic ones in non-mammalian organisms (Seiler, 2002).

The aim of this study was to give a first overview of the toxicological potency of nine

human pharmaceuticals on non-target species like fish. For this purpose, in vitro assays using

fish cells were chosen as they have the advantage of minimising animal use, allowing the

testing of a wide range of different chemicals and concentrations, and determining the cell or

organ specific mechanism of toxicity (Eisenbrand et al., 2002). Considering the involvement

of the liver in detoxification, drugs were tested on two complementary hepatocyte models: the

PLHC-1 cell line (Ryan and Hightower, 1994), and the primary rainbow trout hepatocytes
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(PRTH) which maintain in vivo-like enzymatic activity during 3 to 8 days (Ferraris et al.,

2002).

  The nine tested drugs were parent compounds of human pharmaceuticals from seven

different pharmaceutical classes. The two hypolipemiants, Fenofibrate (FF) and Clofibrate

(CF) were chosen because of their wide use in Europe and France respectively. The diagnostic

agent, Gadolinium Chloride (GdCl3), usually used in magnetic radio imaging (MRI), was

tested because of the presence of anomalies in coastal waters and rivers in the south of France

due to human use (Elbaz-Poulichet et al., 2002). The other tested drugs were chosen

according to their wide use in France. Antidepressants were represented by Fluoxetine (FX),

Non Steroidian Anti Inflammatory  Drugs (NSAID) by Diclofenac (DiCF), β-blockers by

Propranolol (POH), antiepileptics by Carbamazepine (CBZ) and antibiotics by

Sulfamethoxazole (SFX) and Amoxicillin (AMX). In mammals most of these drugs are

metabolised by cytochromes P450 (CYP) enzymes and three of them, FF, CF and FX, induce

oxidative stress in human and rodent cells (Qu et al., 2001; Slamon and Pentreath, 2000). In

the present study, the toxicological potency of these pharmaceuticals on fish cells was

evaluated by cytotoxicity measurement, reactive oxygen species production and CYP1A

activity on two fish hepatocyte models PLHC-1 and PRTH.
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2 Materials and methods

2.1  Chemicals

All chemicals were purchased from Sigma (France). Stock solutions of organic

compounds were prepared in dimethyl sulfoxyde (DMSO) at 200 times the desired

concentration. Concerning GdCl3, stock solutions were prepared in ultra-pure water at 100

times the desired final concentration.

2.2  Animals

Immature rainbow trout (Onchorynchus mykiss) were obtained from a local hatchery

(INRA, Gournay-sur-Aronde, France). Fish were kept in tanks with aerated charcoal filtered

tap-water at a temperature of 15°C. Rainbow trout were fed with commercial fish food and

acclimatised to laboratory conditions for a minimum of 2 weeks before use in the

experiments.

2.3 Trout  hepatocyte isolation and culture

Hepatocytes were collected by the perfusion method described by Gagne et al. (1995).

In brief, rainbow trout were killed and the abdominal cavity was rapidly opened in aseptical

conditions. The liver was perfused via the hepatic portal vein with about 30 ml of perfusion

solution: Dulbecco’s Phosphate Buffered Saline (D-PBS) without calcium and magnesium

(Sigma, France), albumin 0.1 % and sodium citrate 10 mM adjusted to pH 7.5. The liver was

dissected, cut in small pieces and transferred to a sterile dissociation solution: D-PBS with

calcium and magnesium (Gibco, France), albumin 0.5 %, NaCl 120 mM and sodium citrate

15 mM. After 30 min agitation at 4 °C, the mix was passed 3 times through sterile 63 µm

nylon gauze. The cell suspension was washed 3 times by centrifugation at 2000 g, 4 °C during

4 min until the supernatant became clear. The supernatant was then removed and the cells

resuspended in 5 ml of D-PBS with calcium and magnesium. The cell viability was
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determined using trypan blue exclusion test and was always found above 90 %. Freshly

isolated hepatocytes were seeded in 48 well untreated microplates (Iwaki, Japan) at a density

of 15.105 cells per well and cultured at 15°C in M199 cell culture medium (Sigma, France)

supplemented with 5 % decomplemented fœtal calf serum, penicillin and streptomycin (50

U/ml) and 10 mM hepes. Cells were left to incubate 24 hrs before exposure to chemicals.

2.4 Hepatocyte cell line

 The PLHC-1 cell line, obtained from the American Type Culture Collection (ATCC

CRL 2406), is derived from the hepatocellular carcinoma of the topminnow Poeciliopsis

lucida (Ryan and Hightower, 1994). They were routinely grown at 30 °C in minimum

essential medium with Earle’s salts (E-MEM, Gibco, France) supplemented with 10 % (v/v)

decomplemented fœtal calf serum, 1 % v/v non-essential amino acids (Gibco, France) and 50

U.ml-1 of penicillin and streptomycin in a 5 % CO2 humidified atmosphere. For chemical

testing, cells were sub-cultured and seeded in 96-well plate (TPP, Switzerland) at a rate of

5.105 cells per well and left to grow up to confluency before adding chemicals.

2.5 Chemical exposure

Chemicals dissolved either in DMSO or in ultra-pure water were added to the medium

so that the final solvent concentration was always 0.5 or 1 % v/v respectively. Control wells

received the solvent only (carrier control). After exposure to pharmaceuticals and controls for

24 hrs , both cell models were subjected to MTT and EROD assays. Initially, the tested

concentrations were chosen according to the limit of solubility of each drug. Afterwards, a

range-finding study was conducted to determine the pharmaceuticals exposure that allowed

the modelling of the dose-effect curves.
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2.6  MTT assay

Cytotoxic concentrations were determined by the MTT reduction test adapted from the

Mosmann's procedure (Mosmann, 1983). After chemical exposure the medium was removed

and cells were incubated for 3 hrs with 0.5 mg.ml-1 MTT dissolved in RPMI medium. MTT

was cleared out and the formazan salts were solubilized in 100 µl isopropanol. Plates were

read at 570 nm against a 660 nm reference wavelength on a microplate reader (BioTek

Instruments, France). Cell viability was expressed as a percentage of the corresponding

control value.

2.7 EROD assay

EROD activity in intact cells was assessed as previously described by Hahn et al.

(1996) and  Kennedy et al. (1993). In short, medium was removed and replaced by 100 µl or

300 µl of culture medium containing 2 µM of 7-ethoxyresorufin in 96 and 48-well

microplates respectively. Kinetics of resorufin production were monitored during 15 min in a

microplate fluorimeter (Victor2, Perkin Elmer, France) at 530 nm and 590 nm excitation and

emission wavelengths, respectively, at 30°C for PLHC-1 cells and at room temperature for

PRTH. In each test, the positive control for EROD induction was 1 µM BaP. Then, the wells

were washed with PBS and total cellular proteins were determined with the fluorescamine

assay (Lorenzen and Kennedy, 1993), using bovine serum albumin (BSA) as a standard. The

EROD activity was expressed in pmol of resorufine per minute and per mg of proteins

(pmol.min-1.mg-1).

2.8 Reactive oxygen species (ROS) generation

The production of ROS in PLHC-1 cells was determined by using the method of

LeBel et al. (1983) with slight modifications. Cells were washed three times with PBS and

incubated with 1 µl of 40 µM DCFH-DA (dichlorofluorescamin diacetate) diluted in PBS
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supplemented with 10 mM glucose (PBS-Gluc). After 30 min incubation at 30 °C, the cells

monolayers were washed twice with PBS and exposed to pharmaceuticals in PBS-Gluc. The

fluorescence of oxidised DCFH was measured immediately and every hour during 5 hrs with

a microplate fluorimeter (Victor2, Perkin Elmer, France), at excitation and emission

wavelengths of 490 nm and 535 nm respectively. Positive control was obtained using 5 µM

H2O2. The kinetics allowed the determination of the time of toxic exposure at which

maximum of ROS production occurred. Results were expressed as a percentage of the basal

fluorescence in the carrier control wells.

2.9 Data analysis

The toxicity of the tested substances was expressed by the concentration of drug

required to observe 50 % of the maximum effect (EC50). EC50 for MTT reduction and EROD

inhibition were calculated using the Microsoft Excell Regtox 6.3 macro  (Vindimian et al.,

1983) freely available at www.perso.wanadoo.fr/eric.vindimian/en_index.html. All

experimental data were expressed as means ± standard deviation of 3 (PLHC-1) and 4

replicates (PRTH). Data were subjected to statistical analysis by one way analysis of variance

(ANOVA) followed by Dunnett's bilateral posthoc test. A value of p < 0.05 was considered

significant. The SPSS™ software version 10.1 for Windows was used for the statistical

analysis. All results are representative of at least three independent experiments.



10

3 Results

3.1 Cytotoxicity

The MTT EC50 values and the concentrations of pharmaceuticals tested on PRTH and

PLHC-1 are summarised in Table 1. The levels of toxicity varied not only according to the

substances tested but also to the biological model.

The most cytotoxic drugs to PLHC-1 cells were CF, FX, FF and DiCF with MTT EC50 values

of 2 µM, 5 µM, 9 µM and 19 µM respectively. On PRTH, the most cytotoxic drugs were FF,

FX and CF with EC50 of 53 µM, 66 µM and 133 µM respectively. For the other drugs, the

EC50 values ranged from 85 µM (POH) to 651 µM (CBZ) on PLHC-1 and from 453 µM

(POH) to 963 µM (GdCl3) on PRTH. Among the tested compounds, only the antibiotic AMX

showed no cytotoxicity neither on PLHC-1 nor on PRTH. For the sulfamide antibiotic, SFX,

cytotoxicity appeared only at the highest tested concentration. The overall comparison of the

MTT EC50 values obtained for both models showed that PRTH were somewhat less sensitive

than PLHC-1 to the pharmaceuticals cytotoxicity. Indeed, EC50 values on PRTH cells were

from 5 (FF, POH) to 50 (CF) orders of magnitude higher than those obtained for PLHC-1.

1.2 Effect on EROD activity

None of the tested drugs induced EROD in PLHC-1 hepatocytes due to a low basal

EROD expression, only induction could be studied in these cells. On the contrary, PRTH

allowed the detection of both induction and inhibition of EROD activity. As seen in Fig.1-4,

different patterns of responses were observed. First a significant increase of EROD activity

was observed in cells exposed to sublethal concentration of the beta-blocker POH (Fig. 1).

Secondly, all substances, except AMX (Fig.4.), were able to decrease EROD activity whether

at sublethal or lethal concentrations. The specific EROD inhibition, at clearly sublethal

concentrations, appeared after exposure to DiCF, SFX and CBZ  (Fig. 2) whereas this
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inhibition appeared to be less specific in the case of FF and CF (Fig. 3). Finally the EROD

inhibition was concommitant with cytotoxicity in cells exposed to FX, GdCl3 and POH

(Fig.4).

1.3 ROS production

Three (FF, CF and FX) out of nine pharmaceuticals induced significant ROS production

in PLHC-1 cells (Fig.5). FF was the most efficient in inducing an oxidant effect as, within the

first hour of exposure, ROS production increased in a dose-dependant manner (7.8 - 30 µM)

up to 4 times the basal level at the highest concentration tested. The ROS level, after CF and

FX exposure, was weaker as it reached only about 1.5 times the basal value after a 4 hrs

exposure at 1000 and 36 µM respectively.
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4 Discussion

The purpose of this work was to evaluate the acute and sublethal effects of nine

pharmaceuticals on two fish hepatocyte models, PLHC-1 and PRTH. The main outcomes are:

(1) eight of the nine tested drugs were cytotoxic on both cell models; (2) for FF, CF and FX,

oxidative stress was involved in cytotoxicity process; (3) specific EROD inhibition was

observed with DiCF, CBZ and SFX, and, to a lesser extend, by FF and CF; (4) POH

significantly induced EROD activity.

Our results suggest that most of the tested drugs (FF, CF, FX, POH, DiCF, GdCl3) were

more toxic to PLHC-1 than to PRTH (Table 1). This difference could reflect the different

sensitivity  of cell lines versus primary hepatocytes or the differences  in the ability of each

model to metabolise human drugs as PRTH can inactivate toxicants (via metabolisation) and

develop defence against oxidants (Ferraris et al., 2002). Only CBZ was more toxic in PRTH,

probably because of its transformation into active metabolites CBZ-E and/or arene oxide

(Masubuchi et al., 2001; Tabatabaei et al., 1997). Overall, although no comparable data are

available in fish for all the tested substances, MTT EC50 measured in this study are in the

same range and sometimes slightly more sensitive than cytotoxic concentrations previously

described in human and rat. For example, the MTT EC50 found in human and rat hepatocytes

range between 176 and 341 µM for POH (Ponsoda et al., 1995), and between 61 and 64 µM

for DiCF (Bort et al., 1999b). In the same way the EC50s obtained with the acute Daphnia

magna test for FX (Brooks et al., 2003), POH (Huggett et al., 2002), CBZ and DiCF

(Cleuvers, 2003; Ferrari et al., 2003), are in the same order of magnitude as our cytotoxicity

results. In parallel, all the tested drugs except AMX, interacted with CYP1A metabolism

pathways in rainbow trout hepatocytes through an induction or an inhibition of the EROD
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activity. Such effects are of environmental concern, as alteration of CYP1A activity has been

shown to affect xenobiotic metabolism and toxicity in rainbow trout (Hawkins et al., 2002).

The hypolipemiants FF and CF belong to peroxisome proliferators (PPs). This group of

structurally diverse compounds is known to bind and activate the peroxisome proliferator-

activated receptors (PPARs). Among the three main PPARs isoforms so far identified

(PPARα, PPARβ, PPARγ) PPARα seems to mediate the hypotriglyceridemic effect of

hypolipemiants by inducing high rates of mitochondrial and peroxisomal β-oxidation of lipids

in rodents and human (Mukherjee et al., 1994). Such activation leads to pro-oxidant effect via

the increase of H2O2 production rate in mice (Qu et al., 1999; Qu et al., 2001). In salmon

hepatocytes the activation of PPARγ (Andersen et al., 2000) after exposure to fibrates,

mediates enzymatic response like the increase of peroxisomal acyl-co-enzyme-A activity

(Ruyter et al., 1997). In addition FF has been described to be more efficient than CF in

inducing peroxisome proliferation in rat hepatocytes and in increasing characteristic

peroxisomal activities such as carnitine acetyl transferase (CAT) or CYP4A1 activities

(Hildebrand et al., 1999). In our experiments, FF rapidly induced ROS generation whereas its

homologue was much less efficient regarding ROS production (Fig. 3). Thus, our results

support the idea that CF and FF activate PPARs or at least peroxisomal activities in fish cells.

This finding is particularly interesting because differences between species have been

reported about sensitivity towards peroxisome proliferation. Indeed dogs and humans are

regarded as insensitive species (Ashby et al., 1994) whereas rat (Hildebrand et al., 1999) and

fish (Ruyter et al., 1997) would be sensitive ones.

ROS, such as H2O2, are known to specifically inhibit CYP enzymes mainly at the

transcriptional level by inhibiting the mRNA synthesis (Barker et al., 1994; Risso-de

Faverney et al., 2000). Sometimes this CYP inhibition also occurs at the posttranscriptional
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level by the increasing the degradation of mRNA (Delaporte and Renton, 1997) or at the

protein level when toxicants act directly as mechanism-based inhibitors (suicide substrate)

(Watson et al., 1995),. Moreover Jiao and Zhao(2002) showed that FF inhibited the growth of

human HepG2 cells in a dose-related manner through the generation of oxidative stress.

Consequently, it is very likely that, in fish cells, specific EROD inhibition and loss of cell

viability by FF and CF are due to ROS overproduction through PPAR activation.

The antidepressant FX was among the most cytotoxic drugs in both cellular models

and induced ROS production in PLHC-1. The resulting hypothesis that, in fish hepatocytes,

FX cytotoxicity is mediated through oxidative stress is consistent with the previous study of

Slamon and Pentreath (2000) who showed the involvement of antioxidants such as glutathion

(GSH) in the protection of rat glioma C6 cells and human astrocytes cell line against this

antidepressant.

The DiCF exerted a cytotoxic effect at 500 µM, which is in agreement with previous

results on rat or human hepatocytes (Bort et al., 1999b). The mechanism of DiCF cytotoxicity

is not fully understood but there is some evidence that both uncoupling of mitochondrial

oxidative phosphorilation and CYP-mediated metabolism are involved in human and rat

hepatocytes acute toxicity(Bort et al., 1999a). In our study, we observed a clear inhibition of

EROD at 36 µM, suggesting a specific interaction between DiCF or its metabolites with this

enzyme in rainbow trout, but this interaction is apparently not related to the cytotoxicity of

DiCF to PRTH. Although the mechanism of CYP1A inhibition by NSAID is not known, the

ability of these drugs to decrease 3 methylcholanthrene-induced EROD activity has been

reported in rat hepatocytes (Pappas et al., 1998).

Among the tested drugs, the β-adrenergic receptor antagonist, POH, was the only

EROD inducer in PRTH. To our knowledge, there is no report on the ability of this compound

either to bind and activate the aryl hydrocarbon receptor (Ah-R), or to induce the CYP1A
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enzyme. Nevertheless, the observed EROD induction might be related to POH metabolism by

CYP1A previously described in β-naphtoflavone-induced rat hepatic microsomes (Li and

Zeng, 2000).

In human lymphocytes, CBZ is metabolised by CYP dependant monooxygenase into

10,11-epoxide CBZ (CBZ-E), an active and toxic metabolite which is then transformed into

the corresponding diol by an epoxide hydrolase (Tabatabaei et al., 1997). It was clearly

established that in some cases, clinical toxicities were associated with CBZ-E production.

CBZ-E is also found in mice, dog, rat and rabbit (Rambeck et al., 1990), thus representing a

metabolic pathway common to these species. In human and rat, CYPs involved in CBZ

metabolism are diverse and include CYP1A2, CYP2C8, CYP3A4, CYP2D and CYP1A2

(Masubuchi et al., 2001; Mesdjian et al., 1999). Recently, it has been shown that CBZ

biotransformation into arene-oxide intermediates by CYP2D in rat and CYP1A2 in humans

results in inactivation of the enzymes themselves probably via the covalent binding of these

metabolites with CYP proteins (Masubuchi et al., 2001). Therefore, the strong and specific

CYP1A inhibition observed in our study results likely from the CBZ biotransformation into

reactive metabolites and thus suggests the ability of fish cells to metabolise this drug.

The contrast agent GdCl3 has been described as a CYP inhibitor in vivo in human and

rodents (Badger et al., 1997; Palasz and Czekaj, 2000). In goldfish, it has been shown to

accumulate in the liver and to induce antioxidant enzymes after 10 days of exposure (Chen et

al., 2000). Our results did not correlate with those data as GdCl3 neither inhibited specifically

EROD activity, nor induced oxidative stress in fish cells. This suggests a low sensitivity of

the fish hepatocytes PRTH and PLHC-1 to this rare earth element.

Although the sulfonamide antibiotic SFX was not cytotoxic enough to calculate EC50

values, it inhibited EROD activity right from 125 µM. In human liver microsomes, SFX is

described as a selective inhibitor of CYP2C8 and CYP2C9 that would loose selectivity for the
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CYP isoforms at concentrations higher than 500 µM (Wen et al., 2002). As a result, SFX must

be a selective inhibitor of CYP1A enzymes in fish hepatocytes. Concerning the ampicillin

antibiotic, AMX is not described as a potential toxicant in literature and, accordingly, it didn’t

exert any particular effect on fish hepatocytes.

In summary, this study raises three interesting observations. First, a classification of

human drugs from the least to the most cytotoxic to fish hepatocytes was established: the two

antibiotics (AMX and SFX) showed no cytotoxic effect, whereas the hypolipemiants (CF and

FF) and the antidepressant (FX) were the most cytotoxic and induced oxidative stress at

sublethal concentrations. Secondly, the majority of the human drugs caused a specific EROD

inhibition. This may have relevance to the use of CYP1A as a biomarker for aquatic pollution.

In a multipollution context, considering the involvement of CYP1A in detoxification

pathways, its inhibition could increase the toxicity of the other toxicants. Thirdly, if the

effective concentrations were comparable with ecotoxicity tests found in the literature, they

remain much higher (one thousand times) than those found in the environment. Nevertheless,

before coming to a conclusion about the absence of toxicity in fish exposed to contaminated

waters in the environment, the in vivo potential adverse effects of drugs to fish under chronic

exposure should be assessed.
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Figures

Fig. 1. Specific induction of EROD activity and viability of primary rainbow trout (PRTH)
hepatocytes after 24 hrs of exposure to propranolol (POH). Values are means ± Standard
Deviation.
a Significant difference from basal EROD activity (p < 0.05).
b Significant difference from the positive control of cell viability (p < 0.05).

Fig. 2. Specific inhibition of EROD activity at sublethal concentrations on primary rainbow
trout (PRTH) hepatcoytes after 24 hours of exposure. Values are means ± Standard Deviation.
a Significant difference from basal EROD activity (p < 0.05).
b Significant difference from the positive control of cell viability (p < 0.05).

Fig.3. Basal EROD inhibition and cell viability of primary rainbow trout (PRTH) hepatocytes
after 24 hrs of exposure to the two hypolipemiants clofibrate (CF) and fenofibrtae (FF).
Values are means ± Standard Deviation.
a Significant difference from basal EROD activity (p < 0.05).
b Significant difference from the positive control of cell viability (p < 0.05).

Fig.4. Pharmaceuticals without specific effect on the EROD activity at sublethal
concentrations on primary rainbow trout (PRTH) hepatcoytes after 24 hours of exposure:
cytotoxic and not cytotoxic ones. Values are means ± Standard Deviation.
a Significant difference from basal EROD activity (p < 0.05).
b Significant difference from the positive control of cell viability (p < 0.05).

Fig. 5. ROS production on PLHC-1 cells after 1 hr of exposure for fenofibrate (FF) and after
4 hrs of exposure for clofibrate (CF) and fluoxetine (FX). Times of exposure were chosen
after the study of the kinetics of ROS production for each compound during 5 hours, and
correspond to the time with the optimum of ROS production. The six other drugs  (POH,
SFX, CBZ, GCl3, AMX, DiCF) didn’t show any ROS production. Values are means ±
Standard Deviation.
* Significant difference from control (p < 0.05).



24

  EROD activity
  Cell viability

0

5

10

15

20

25

30

35

0 31,25 62,5 125 250 500

Propranolol (µM)

E
R

O
D

 (
pm

ol
/m

in
/m

g)

0

20

40

60

80

100

120

140

%
 v

ia
bi

lit
y

a a
a

b

b

a

a

Fig.1.



25

  EROD activity
  Cell viability

0

2

4

6

8

10

12

14

0 31,25 62,5 125 250 500

Diclofenac (µM)

E
R

O
D

 (
pm

ol
/m

in
/m

g)

0

20

40

60

80

100

120

140

%
 v

ia
bi

lit
y

a

a a a

b

0

5

10

15

20

25

30

35

40

45

50

0 31,25 62,5 125 250 500

Carbamazepine (µM)

E
R

O
D

 (
pm

ol
/m

in
/m

g)

0

20

40

60

80

100

120

140

%
 v

ia
bi

lit
y

a

a

a

b

b

a a

0

5

10

15

20

25

30

35

40

45

50

0 31,25 62,5 125 250 500

Sulfamethoxazole (µM)

E
R

O
D

 (
po

m
l/m

in
/m

g)

0

20

40

60

80

100

120

140

%
 v

ia
bi

lit
y

a

a

a

a

b

Fig. 2.



26

  EROD activity
  Cell viability

0

2

4

6

8

10

12

14

16

18

20

0 1,88 3,75 7,5 15 30
Fenofibrate (µM)

E
R

O
D

 (
pm

ol
/m

in
/m

g)

0

20

40

60

80

100

120

140

%
 v

ia
bi

lit
ya

a

a

a

b b b
b

0

5

10

15

20

25

30

35

40

45

50

0 62,5 125 250 500 1000
Clofibrate  (µM)

E
R

O
D

 (
pm

ol
/m

in
/m

g)

0

20

40

60

80

100

120

140

%
 v

ia
bi

lit
y

a

b

a
a

a

a

b
b b

Fig. 3.



27

  EROD activity
  Cell viability

0

5

10

15

20

25

30

0 9 18 36 70 140
Fluoxetine (µM)

%
 v

ia
bi

lit
y

0

20

40

60

80

100

120

140

E
R

O
D

 (
pm

ol
/m

in
/m

g)

a

a

b

b

0

5

10

15

20

25

0 62,5 125 250 500 1000

Gadolinium chlorhyde  (µM)

E
R

O
D

 (
pm

ol
/m

in
/m

g)

0

20

40

60

80

100

120

140

%
 v

ia
bi

lit
y

b
a

b

a

0

5

10

15

20

25

0 31,25 62,5 125 250 500

Amoxicillin (µM)

E
R

O
D

 (
pm

ol
/m

in
/m

g)

0

20

40

60

80

100

120

140

%
 v

ia
bi

lit
y

Fig. 4.



28

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35

Fenofibrate (µM)

%
 b

a
sa

l R
O

S
 p

ro
du

ct
io

n
*

*

*

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000

Clofibrate (µM)

%
 b

a
sa

l R
O

S
 p

ro
du

ct
io

n

*

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140

Fluoxetine (µM)

%
 b

as
al

 R
O

S
 p

ro
d

u
ct

io
n

*

Fig.5.



29

Tables

Table 1.

Tested concentrations of pharmaceuticals on primary rainbow trout hepatocytes
(PRTH) and PLHC-1 cell line and EC50 of cytotoxicity.

Values are EC50 and confidence interval calculated with MTT results after 24 hours of
exposure.

n.m : not modelisable ; n.c : not cytotoxic

Pharmaceutical Tested concentrations (µM) EC 50 cytotoxicity (µM)

Confidence interval with α=5 %
PLHC-1 PRTH PLHC-1 PRTH

Fenofibrate (FF) 0.1 – 15.6 1.9 - 30 9
8- 11

53
28 – 102

Clofibrate (CF) 3.9 - 500 62.5 - 1000 2
2 – 3

133
117  – 161

Fluoxetine (FX) 1.1 - 140 9 - 140 5
4 – 6

66
44 - 83

Propranolol
(POH)

3.9 - 500 31.3 - 500 85
72 - 102

453
334 - 690

Diclofenac
(DiCF)

3.9 - 500 31.3 - 500 19
11 - 29

420
361 - 480

Gadolinium
chloride (GdCl3)

7.8 - 1000 62.5 - 1000 262
112 - 789

963
672 - 1516

Carbamazepine
(CBZ)

3.9  500 31.3 – 500 651
344 - 2127

318
253 - 401

Sulfamethoxazol
e (SFX)

3.9 - 500 31.3 - 500 n.m n.m

Amoxicillin
(AMX)

3.9 - 500 31.3 - 500 n.c n.c
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Table 2. 

EROD EC50 of  9 pharmaceuticals tested on primary rainbow trout hepatocytes
(PRTH).

Values are  EC50 with confidence interval calculated with EROD results after 24 hours
of exposure.

*Inhibitors of the basal EROD activity at sublethal concentration.

5 Pharmaceutical Effect on the basal EROD
activity

EC50 EROD

Fenofibrate (FF)* Inhibition 25
13 - 30

Diclofenac (DiCF)* Inhibition 63
62 – 68

Fluoxetine (FX) Inhibition 77
58 – 95

Clofibrate (CF* Inhibition 96
88 -104

Sulfamethoxazole (SFX)* Inhibition 108
78 – 144

Carbamazepine (CBZ)* Inhibition 318
253 – 401

Gadolinium chlorhyde
(GdCl3)

Inhibition 371
279 - 482

Propranolol (POH) Induction 27
1 - 44

Amoxicillin (AMX) No effect -


