Graph-Based Data Fusion Applied to: Change Detection and Biomass Estimation in Rice Crops - IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (<b>anciennement Cemagref</b>)
Article Dans Une Revue Remote Sensing Année : 2020

Graph-Based Data Fusion Applied to: Change Detection and Biomass Estimation in Rice Crops

Résumé

The complementary nature of different modalities and multiple bands used in remote sensing data is helpful for tasks such as change detection and the prediction of agricultural variables. Nonetheless, correctly processing a multi-modal dataset is not a simple task, owing to the presence of different data resolutions and formats. In the past few years, graph-based methods have proven to be a useful tool in capturing inherent data similarity, in spite of different data formats, and preserving relevant topological and geometric information. In this paper, we propose a graph-based data fusion algorithm for remotely sensed images applied to (i) data-driven semi-unsupervised change detection and (ii) biomass estimation in rice crops. In order to detect the change, we evaluated the performance of four competing algorithms on fourteen datasets. To estimate biomass in rice crops, we compared our proposal in terms of root mean squared error (RMSE) concerning a recent approach based on vegetation indices as features. The results confirm that the proposed graph-based data fusion algorithm outperforms state-of-the-art methods for change detection and biomass estimation in rice crops.
Fichier principal
Vignette du fichier
remotesensing-12-02683-v2.pdf (36.7 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03142181 , version 1 (10-11-2024)

Licence

Identifiants

Citer

David Alejandro Jimenez-Sierra, Hernán Darío Benítez-Restrepo, Hernán Darío Vargas-Cardona, Jocelyn Chanussot. Graph-Based Data Fusion Applied to: Change Detection and Biomass Estimation in Rice Crops. Remote Sensing, 2020, 12 (17), pp.2683. ⟨10.3390/rs12172683⟩. ⟨hal-03142181⟩
52 Consultations
0 Téléchargements

Altmetric

Partager

More